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ABSTRACT 

DASH streaming for 360-degree content is gaining more traction 

in research and commercial areas. The usefulness of H.265/HEVC 

Motion Constrained Tile Sets (MCTS) and viewport-dependent 

streaming is recognized. Streaming high quality tiles for the 

viewport and lower quality tiles in the surrounding area provide 

considerable bandwidth saving. However, required bit rate 

estimation is difficult for a changing viewport with variable tiles, 

prompting research in development of new ABR algorithms. In this 

paper, we present Full Sphere Bit rate Estimation (FriSBE), an 

Adaptive Bit Rate (ABR) technique for tiled omnidirectional 

content that reuses existing ABR algorithms developed for 2D 

video. We implemented FriSBE in an OMAF-based DASH player 

and found that it is able to adapt to both head motion and changing 

network conditions with minimal stalls. Our experiments showed 

no stall events for stable conditions with or without head motion, 

and on average 1s stall duration for varying network conditions 

when bandwidth was sufficient for at least the lowest quality video, 

despite a short 3 second buffer.   

CCS CONCEPTS 

• Information systems → Multimedia streaming; • Human-

centered computing → Virtual reality.  
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1 Introduction 

There is a growing interest in extended reality in research and 

industry with efforts on various fronts vested in the success of the 

technology. Moving Picture Experts Group (MPEG) has developed 

the first international Virtual Reality (VR) system standard, 

Omnidirectional MediA Format (OMAF), a file format for storage 

and distribution of 360-degree video and audio [1]. MPEG-DASH 

is supported by the OMAF format, which allows adaptive 

streaming of VR content over HTTP, enabling the use of existing 

infrastructures and services to stream 360-degree videos.  

Managing user experience and network bandwidth limitations pose 

a big challenge for 360-degree video streaming. VR content is often 

viewed on Head Mounted Display (HMD) devices, which project 

the images much closer to the eyes and block the real world. This 

makes users more prone to noticing visual defects in the media and 

exposes them to physical side effects, such as motion sickness. 

Hence, immersive video has more stringent requirements for high 

quality, uninterrupted content than 2D video. Furthermore, 360-

degree video content size is much larger than 2D content, and a 

good experience calls for a spatial resolution of at least 4K or 

higher, leading to higher bandwidth requirements.  

Viewport-dependent delivery offers respite to bandwidth 

requirements, where the viewport content is streamed at a higher 

quality than the surrounding non-viewport content. Since, at a 

given point of time, the non-viewport part of the content is not 

being watched, it does not have an impact on the user experience, 

except when the user turns his/her head. In such a case, updating 

the non-viewport content to viewport quality as early as possible is 

desirable. Extensive work has been done to show the bandwidth 

savings through Viewport-Dependent Streaming (VDS), where 

viewport tiles are requested at higher quality [2, 4, 5, 7, 10, 15, 16].  

The primary challenge of using tiled VDS with ABR arises because 

the client receives only tile bit rates as part of the DASH manifest. 

At any time, depending on the viewport orientation, the number and 

size of the tiles in the viewport may differ, hence drastically 

changing the required bit rate for a particular viewport and non-

viewport quality. This paper presents our work on developing an 

ABR solution for tiled 360-degree video streaming. We developed 

the Full Sphere Bit rate Estimation (FriSBE) process to estimate the 

bit rate for each viewport quality level, considering viewport 

orientation and variation in tile bit rates. We implemented FriSBE 

in the Nokia OMAF player and tested it with a fetch time based 

ABR algorithm [12], as well as the Buffer Occupancy Lyapunov 

Algorithm (BOLA) from dash.js [11]. In our implementation, the 

algorithms were able to avoid stall events and adapt to varying 

network conditions.  

The remainder of this paper is organized as follows. Related work 

is presented in section 2. The design of FriSBE is discussed in 

section 3, followed by a description of our own implementation in 

section 4. Section 5 explains the test conditions used for evaluating 
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the implementation and finally the results are presented in section 

6. Conclusions and future work are discussed in section 7.  

2 Related Work 

Adaptive streaming over HTTP is a well-established field with 

extensive research in the area and commercial solutions available 

for traditional video [14]. 360-degree video adaptive streaming is a 

relatively new area. Tile-based 360-degree content with viewport-

dependent delivery has been found to be an effective solution for 

adaptive streaming with 30-70% savings in bandwidth 

consumption [2, 5, 7, 10, 15, 16]. In [8], the authors present an 

adaptation scheme, which assigns a weighted portion of the 

available bandwidth to each tile based on its distance from the 

viewport. An HTTP/2 based approach is provided in [22], with 

experiments using constant bit rate tiles, which simplifies required 

bit rate calculations for tile download. Variable video bit rates are 

more often used in practice, so our paper addresses the problems 

arising from variability in tile bit rates. Unlike previous work, we 

provide an OMAF implementation and a method for making 360-

degree video compatible with existing ABR algorithms.  

In addition to traditional DASH schemes, there is an effort to 

identify aspects that are unique to 360-degree video and how they 

can be manipulated for better adaptation. For instance, viewport 

prediction techniques can help reduce the latency of viewport 

updates observed for viewport-dependent streaming [6, 9]. 

Previous studies include work on using machine learning 

techniques for viewport prediction and tile bit rate selection [23, 

24]. Head motion trajectory prediction can also help in reducing 

streaming data wastage by up to 25% [17]. An adaptive 360-degree 

solution for mobile devices with viewport prediction and ABR is 

proposed in [4]. The algorithm fetches a subset of tiles, incurring 

stalls when a tile in the visible region is missing of up to 0.96 s/min. 

The authors in [3] propose a variable-sized tiling scheme that 

balances video encoding efficiency with perceived quality for 

bandwidth savings; the quality of 360-degree video is influenced 

by the speed of the viewpoint, change in scene luminance and 

depth-of-field of the region. While these are important areas to 

explore, our work lays the groundwork for 360-degree adaptive 

video streaming that adapts to changing network conditions without 

prior knowledge about the content or viewport changes. 

3 Design  

Traditional ABR algorithms for 2D/flat video have a single bit rate 

value for the full picture in the DASH manifest, which is used by 

the algorithms when selecting the appropriate quality for the next 

segment. The DASH manifest for OMAF tiled videos provides an 

average bit rate per tile to the player, where the full sphere (FS) is 

composed of multiple tiles. In order to save bandwidth, VDS is 

used so that viewport tiles are downloaded at a high quality, 

whereas tiles that are outside the viewport (consequently not visible 

to the user) are downloaded at a lower quality. While FS bit rate is 

simply the sum of bit rates for the tiles, several factors make 

estimating FS bit rate from the manifest difficult. Firstly, the 

content complexity and the tile sizes are not always homogenous 

 
1 Nokia OMAF implementation https://github.com/nokiatech/omaf  

for a 360-degree video; some tiles may have a much higher bit rate 

than others due to larger size or the encoder assigning more bits to 

it due to content complexity. Secondly, the viewport does not 

always align with tile-boundaries with some orientations requiring 

larger number of tiles than others. Therefore, the required FS bit 

rate can change drastically depending on the number of tiles in the 

viewport, their sizes, and the complexity of the content within those 

tiles. In Figure 1, the bit rate variation is shown for one of our test 

sequences using three vertical and 8 horizontal viewport 

orientations. It shows that slight head movements can create a large 

difference in the required bit rate values. Our motivation for 

FriSBE is to estimate a set of FS bit rates for different quality levels 

that provide the client an approximation of the required bit rate at a 

particular quality regardless of the current viewport. Our design 

consists of the following steps, which are discussed in detail later: 

(i) find the representative viewport V (ii) estimate the required FS 

bit rates for different qualities based on V, and (iii) use the 

calculated FS bit rates from the previous step in the ABR algorithm 

for network adaptation. Despite when using HEVC Motion 

Constrained Tile Sets it is possible to independently decode video 

tiles (possibly using multiple decoders), the FriSBE method treats 

all tiles of a single DASH segment collectively based on the 

assumption that a segment cannot be played until all tiles from that 

segment are available. This is an implementation1 restriction which 

will be removed in the future.  

 
Figure 1 A chart showing variation in FS bit rate values for different 

viewports: 3 vertically and 8 horizontally adjacent positions. The FS 

bit rate is calculated using the advertised bit rate for the highest 

quality for viewport tiles and lowest quality for non-viewport tiles. 

3.1 Representative Viewport V 

As discussed previously, the FS bit rate can vary significantly based 

on the viewport orientation. Defining the required bit rate for 

several orientations for all levels is not only complicated, it also 

does not help in keeping a constant quality level, which is 

imperative for a good user experience [13]. So, we define a method 

for selecting a representative viewport for estimating the required 

bit rates. First the client identifies a multitude of viewports by 

moving the head orientation over the video’s tile grid in granular 

steps, both vertically and horizontally. A viewport is selected 

whenever the tiles change. Once the viewports are identified, the 

FS bit rate is calculated using a higher quality level for the viewport 

tiles and a lower quality level for the non-viewport tiles. We used 

the highest and the lowest quality, respectively, to calculate FS bit 

https://github.com/nokiatech/omaf
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rates at this stage. The viewport with the median FS bit rate was 

chosen as V. While we found using median to be better than using 

the initial viewport (azimuth and elevation are 0 for the OMAF 

spherical coordinates) whether using a different bit rate percentile 

is more efficient is left as future work.  

3.2 Full sphere bit rate estimation 

To compute FS bit rate we aggregate the required bit rate of all tiles 

at the quality at which they will be downloaded using the 

representative viewport. The tiles are divided in two groups; the 

group of tiles (partially or fully) within the viewport, V, and the 

group of all remaining tiles, V′. We only modify the quality for V, 

whereas V′ is always downloaded at the lowest quality. Hence, for 

N quality levels (and corresponding required bit rates) advertised 

in the DASH manifest, we create N quality levels (and 

corresponding required bit rates) for FS where the required FS bit 

rate has a direct correlation with quality. To minimize the effects of 

delayed viewport update after head motion, we add a margin area 

to the actual viewport size of the device and use that as the viewport 

size. Formally, for a quality level q, the DASH manifest contains 

the tile bit rate 𝐵𝑇
𝑞
, where T is a tile that is fully or partially within 

the viewport area 𝑉, or it is part of the non-viewport tiles 𝑉′. Then 

the full sphere bit rate 𝐵𝐹𝑆
𝑞

 is:  

 

𝐵𝐹𝑆
𝑞

=  ∑ 𝐵𝑇
𝑞

𝑉

+  ∑ 𝐵𝑇
0

𝑉′

 (1) 

 

where q has N levels, 0 is the lowest and N-1 is the highest.  

Note that we use the term viewport/viewport area to imply the 

region including the margin and not just the device’s viewport in 

the formula and also other sections of the paper, as both viewport 

and margin are treated equally (i.e., downloaded at the same 

quality). More complex schemes with variable margin sizes or 

higher quality  for all non-viewport tiles can also be used, but 

require more insight into the role of margins as it may affect the 

relationship between quality and bit rate (a viewport with a wide 

margin at a lower quality may require more bit rate than one at high 

quality with no margin). This is left for future work.  

3.3 ABR Algorithms 

Having a set of FS quality levels and bit rates, the player can now 

use existing ABR algorithms for adaptation. Some modifications in 

the computation of the indicators used in ABR algorithms is 

required to take into account all tiles for each segment. For instance, 

in our implementation, we define buffer occupancy as the number 

of segments in the buffer for which all tiles have been downloaded, 

and throughput values account for overall throughput for all tile 

downloads. Once the ABR has chosen the FS quality for the 

segment, the player uses the current viewport orientation to 

determine the tiles currently in viewport. Each quality for the FS is 

mapped to a particular V and V′ quality. The player downloads the 

viewport tiles at quality for V and non-viewport tiles at quality for 

V′ (lowest) based on currently chosen FS quality.  

To summarize, Figure 2 illustrates the player operations described 

in this section. The manifest provides a KxN set of bit rates, 𝐵𝑇
𝑞
, for 

K tiles and N qualities. From this set, FriSBE creates a set of N FS 

bit rates, 𝐵𝐹𝑆
𝑞

, that each represent V at quality q and V′ at quality 0, 

which are provided to the ABR algorithm. A mapping for each FS 

quality and the corresponding V/V′ quality is made available to the 

video downloader. The ABR algorithm uses the set {𝐵𝐹𝑆
𝑞

}N and the 

ABR indicators collected by the video downloader to choose the 

quality for the next segment. A further sanity check based on 

throughput is performed to ensure that the chosen quality by the 

ABR algorithm is sustainable in the current network conditions. If 

the sanity check passes, q = q′, otherwise q > q′. Finally, the 

downloader determines based on the current viewport, the tiles that 

qualify in V and those in V′, and downloads them according to the 

available quality mapping.  

4 Implementation 

We augmented the public sourced Nokia OMAF Player Engine 

with our FriSBE ABR technique. We used two ABR algorithms: a) 

the TIME algorithm based on work in [12], and b) the BOLA 

algorithm adapted from the DASH reference player [11]. Since, the 

scope of the paper is not to compare adaptation logic, the ABR 

algorithms are treated as black boxes and their detailed operation is 

not described in the interest of space. As mentioned previously, the 

indicators such as throughput and buffer occupancy consider all 

tiles for each segment. The TIME algorithm uses time to download 

as an indicator for which we use single tile downloads, but the 

parameters are adjusted to consider that all tiles must be 

downloaded within a fraction of their playout time.  

For segment download the player uses a parallel segment fetching 

method as described in [12]. The method maintains multiple HTTP 

connections at the same time; one HTTP connection for each tile, 

i.e., one HTTP thread per tile (12 or 24 tiles for our test sequences). 

Figure 2  Flow diagram of player operation with FriSBE 
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The download is not strictly synchronized for segments; however, 

the HTTP thread of a tile may download up to one segment in the 

future if the download for a previous segment is still pending for 

any of the other tiles. For example, if segment i is still being 

downloaded for one or more tiles, the HTTP threads of the other 

tiles may download segment i+1, but not segment i+2; the thread 

must wait for all tiles to finish downloading segment i before 

sending a GET request for segment i+2. The simultaneous multiple 

HTTP connections for tiles that are part of the same segment can 

create race conditions; this is a limitation left for future work. 

Finally, when the viewport changes, the player attempts to 

download the segments of any new tiles in the viewport at higher 

quality even when they are already buffered in the lowest quality. 

If this is done in time for the segment to be played out, the higher 

quality is rendered, otherwise the already buffered lower quality is 

rendered. We used a buffer duration of 3 seconds with a pre-

buffering threshold of at least 1 second to begin playout. The short 

buffer was used to minimize bandwidth waste created by re-

downloading viewport tiles at higher quality after head motion; the 

longer the buffer, the higher the number of segments that need to 

be downloaded again. The viewport size used was 110x110 degrees 

including margin area (device viewport size was 90x90 degrees). 

  

Table 1:  Test Sequences 

Video Resolution Bit rate (Mbps) Tiling Scheme 

Trolley 7680x3840 25,20,15,10 4x3, 6x4 

HarborBiking 5760x2880 35,30,25,20,10 4x3, 6x4 

PoleVault 3840x2160 20,15,10,4 4x3, 6x4 

5 Experiments 

We evaluated the FriSBE based player using three sequences: 

PoleVault, Harbor Biking and Trolley [18] encoded using Kvazaar 

[19]. Table 1 summarizes the test sequences. Each sequence was 

created with two tiling schemes (4x3 and 6x4) using a single 

resolution, multiple quality scheme described in OMAF Annex 

D4.2. Smaller tiles were used in the polar regions; approximately 

30 degrees high for each pole and about 120 and 60 degrees for the 

equator for the 4x3 and 6x4 grid respectively. All tiles had the same 

width. All sequences have a segment size of 566ms: a Group of 

Pictures (GOP) size of 16 + I frame at 30fps. A short segment size 

allowed quick viewport update after head motion. The experiments 

used monitor-based rendering of the viewport and the viewport 

information was fed using text files for the sake of automation and 

reporting. However, some basic testing with HMD was conducted 

to validate the findings and player operation. 

5.1 Head Motion 

The tests were conducted with i) no head motion ii) only horizontal 

head motion represented with the speed of head in degrees per 

second (dps) iii) fast random head motion in all directions, and iv) 

a human generated head motion specific to the content. For the 

latter, we used a single test subject who explored each of the three 

sequences, focusing generally on interesting aspects of the video 

(e.g., reading texts, following the pole vault jumper, watching the 

approaching train etc.) while also exploring the surrounding at least 

once (looking towards the poles and behind). The viewport 

orientation over time for the three user-generated head motion files 

and the random fast head motion for 60 seconds is shown in Figure 

3. The user generated motion has a gap at the back because a 

tethered HMD was used, and the user remained in the comfort zone 

where she did not have to readjust the cable. Also note that the 

points on the figure represent the centre of the viewport; the 

rectangular viewport can be imagined around it. The fast random 

head motion reaches maximum speeds of 60dps in the horizontal 

direction maintained over a few seconds. The human head motion 

has speeds of over 100dps horizontally. However, they only last for 

a second or less. Viewport was updated at 500ms intervals.  

5.2 Network conditions 

The tests were carried out in two phases. The first phase consisted 

of testing the sequences (duration is approximately 60s for all) 

under stable network conditions. Here the goal was to evaluate the 

performance in the presence of head-motion; therefore, the test 

durations were short and the network conditions were stable. We 

tested with no head motion, five horizontal head motion with steady 

speeds (5, 10, 15, 20dps), fast random and human-generated head 

motion. Bandwidths of 50, 35, 25 and 15 Mbps were used. Each 

test case was repeated 10 times for statistical significance.  

In the second phase, we performed 10 minute long tests by running 

the sequences in a loop. In this phase we used two different varying 

network conditions: i) SeeSaw, where the bandwidth cycles 

between 50Mbps and 15Mbps every 30 seconds, starting at 50Mbps 

ii) Slide, where the bandwidth starts at 50Mbps and then changes 

every 30 seconds to 35, 20, 10, 20, 35, 50 and then repeats in that 

order. Since the human generated head motion does not terminate 

Figure 3  An illustration of the head motion; each point represents the center of viewport at a given time, the colour lightens with the passage of 

time changing  in the order red-orange-yellow-white. The first viewport is marked with a black diamond.  Note that the grid on the sphere is shown 

for clarity and does not match the tiling grid of the sequences.  
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at the initial head position, looping it would have resulted in full 

viewport jumps. Therefore, we used the fast random head motion 

for this phase of testing. In addition, we also tested for horizontal 

head motion (15dps) and no head motion. The 10 minute testing 

took significantly longer to run; hence, the testing was repeated 5 

times instead of 10 as in the first phase.  

5.3 Metrics 

We evaluated the performance using typical adaptive streaming 

metrics such as stall events, stall duration, throughput, quality 

levels and changes. In addition, to include the 360-degree aspect, 

we introduced the metric for rendered viewport quality. The 

viewport quality is calculated at the time of rendering using the 

following formula, where L is the total number of tiles visible in 

the viewport at a given time:  

𝑉𝑖𝑒𝑤𝑝𝑜𝑟𝑡𝑄𝑢𝑎𝑙𝑖𝑡𝑦 =  ∑(QR[i]  ·  Coverage [i])

𝐿

𝑖=1

 (2) 

QR is the Quality Ranking of the tile and Coverage is the 

percentage of the viewport the tile is covering. The formula is 

borrowed from 3GPP [20]. Since the ranking follows the OMAF 

specification, the highest quality has the lowest value. Hence, a low 

value of ViewportQuality indicates a better quality. Note that we 

used the ranking such that 1 is always the highest quality and the 

remaining are in uniformly descending order with a decrement of 

one.  Since there are 5 bit rate levels for Harbor Biking (see Table 

1), the lowest quality is 5, whereas it is 4 for the other two 

sequences. With this scheme, if the ViewportQuality value is not a 

whole number or close to a whole number, it can be deduced that 

the viewport is displaying tiles of two qualities at least.  

6 Results 

In this section, we present the results of our experiments, first under 

stable and then under variable network conditions.  

6.1 Stable Network Conditions 

Stable network conditions were used with different levels of head 

motion to study the effects of a changing viewport on the adaptation 

algorithm. The results for different metrics follow.  

6.1.1 Stall Events. Stalls were generally not observed for any of the 

test conditions with steady horizontal head motion even at 20dps. 

The average stall duration for any sequence for all test cases was 

less than 17ms for the Time algorithm and below 2ms for BOLA.  

For the user-generated head motion and random head motion, the 

TIME algorithm showed some stalling. The total number of stall 

events was no more than 2, with 1 being more common. The total 

stall duration for any of the tests ranged from about 25ms to a little 

over 300ms. BOLA algorithm was more successful in avoiding 

stalls, with only one 25ms stall experienced for the PoleVault 

sequence with random fast head motion, too low to impact user 

experience [21].  

6.1.2 Quality Variation. The average ViewportQuality (see 

Equation 2) observed for the sequences was higher for the 6x4 grid 

than the 4x3 grid as shown in Figure 4. Furthermore, the 6x4 grid 

was better at avoiding stall events as well. This is expected, since 

the tiles are smaller and viewport changes lead to smaller overhead 

caused by segments download. However, the MCTS tiling implies 

that smaller tiles have lower encoding efficiency; so this should be 

considered when analysing the overall benefits.  

To estimate the stability of the viewport quality, Figure 5 shows for 

the entire duration of the video, a stacked bar graph of the ratio of 

viewport tiles that were rendered at a given quality to all the 

viewport tiles rendered. For human head motion, the viewport is 

less stable than any of the horizontal head motion schemes we used.  

(a) Fixed bandwidth of 50Mbps 

(b) Fixed bandwidth of 15Mbps 

Figure 5 Stacked graph showing ratio of the viewport tiles at different 

quality levels (1-5). For 50Mbps, the quality was maintained at 

highest level (1) for most cases. For 15Mbps, each sequence maintains 

a different quality.  

 

Hence, we used that in the graphs along with no head motion for 

comparison. At 50Mbps, most sequences remain at the highest 

level of quality for most of the time. At 15Mbps, Harbor maintains 

the lowest quality (5) and Trolley maintains the second lowest (4) 

for the whole sequence. PoleVault has a lower range of required bit 

rates and has more alteration between QR 3 and 4. Note, that the 

small share of QR 1 in all 15Mbps cases is because the player 

always starts at the highest quality before stepping down, leading 

to higher startup delays (mean: 4.5s).  

Figure 4 The 6x4 tile grid was able to not only achieve a higher quality 

viewport, but was able to maintain the quality during head motion 

better than the 4x3 grid for most cases. Results for human and no head 

motion (none) are shown. 
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6.1.3 Throughput. The average throughput was calculated as the 

sum of the sizes of the segments downloaded over the total duration 

of the test. Figure 6 shows the observed throughput for the different 

sequences under different network bandwidths. The values are 

indicative of all test conditions: single viewport, horizontal, random 

and human head motion. We found that the bandwidth utilization 

factors were not as high as some 2D ABR schemes that can be 

found in the literature. The reason was threefold: i) the encoding bit 

rate levels did not always match exactly with the bandwidth, ii) the 

chosen quality takes into account head motion and the possibility 

of sudden rise in throughput, and hence is more conservative and 

iii) potential race conditions caused by the use of multiple HTTP 

connections for each tile, which can penalize the player at times. 

We hope to address the last of these in future work.   

 
Figure 6 Average throughput for the different sequences and network 

bandwidth shown here with error bars. 

6.2 Variable Network Conditions 

The 10-minute tests show the adaptability of the algorithms to 

changing network conditions. Of the two configurations we used, 

Slide has one bandwidth level that is too low for two of the 

sequences we used, and stalls are expected. The other, SeeSaw, 

never falls to a bandwidth that is too low to sustain uninterrupted 

streaming but is more challenging as it sees sudden large drops in 

bandwidth.  
6.2.1. Stall Events. We observed no stall events for PoleVault in 

our testing for variable network conditions. Short stall events, 100-

200ms were sometimes observed when bandwidth dropped in 

SeeSaw. For, Slide, more stalls were observed because the 

bandwidth dropped to 10Mbps, which was too low for both Trolley 

and Harbor at even the lowest quality as can be seen in Figure 7a. 

The stall event duration per stall was short due to a short buffer 

duration. Since several stalls are less preferred to one long stall 

[21], as future work we plan to experiment with buffer lengths to 

overcome this. Average total stall duration for the entire duration 

for all test conditions is summarized in Table 2. 

 Table 2:  Total stall duration 

 

6.2.2. Adaptability. Our implementation was able to adapt to 

changing network conditions with and without head motion. For 

reference, we show timeline graphs in Figure 7 for the BOLA 

algorithm.  

The first one is the 10-minute looped Trolley sequence with the 

SeeSaw network profile. Note that Quality 1 is the highest, so the 

algorithm is switching to highest quality when the bandwidth is 

50Mbps and to lowest quality when the bandwidth is 15Mbps; there 

is no head motion and no stall events for this test, although there 

were some short stalls for bandwidth drops in some cases. The 

second graph is for the 10-minute looped Harbor case with Slide 

network profile with random fast head motion. Note that the stalls 

are mostly in the region where bandwidth is too low for the 

sequence and the algorithm adapts otherwise. When bandwidth is 

large, the head motion causes the quality to drop occasionally 

(calculated based on Equation 2). Note that the graph in Figure 7b 

shows the most challenging test sequence and test condition.  

 
(a) SeeSaw network profile with no head motion 

 
(b) Slide network profile with random head motion 

Figure 7 A timeline showing the adaptation of quality levels 

7 Conclusions 

In this paper, we presented a method for calculating the required bit 

rates for the full sphere of a tiled 360-degree video when viewport-

dependent streaming is used. It provides a practical approach for 

integrating the now widely deployed ABR algorithms for 2D video 

that have been improved over various iterations with the emerging 

360-degree video use case. Using a DASH OMAF player, we 

showed the effectiveness of the method when used with two 

existing ABR algorithms to adapt based on viewport orientation as 

well as network conditions while minimizing the occurrence of stall 

events. With a buffer-based algorithm, we observed that when 

bandwidth was sufficient average stall duration for our 10-minute-

long tests was under 1s. This was observed in the presence of head 

motion and drastically changing network conditions and despite a 

very short 3 second buffer duration. The paper highlights areas of 

future work to further optimize throughput utilization and stability.   
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