3GPP TSG SA WG4#113-e meeting	Tdoc S4-210571
6th– 14th April 2021

Source:	Fraunhofer IIS, Apple
[bookmark: OLE_LINK6][bookmark: OLE_LINK7]Title:	Proposed Addition to EVS Source Code VoIP mode
Document for:	Information
Agenda Item:	8.3

1 Introduction
	
This document aims at giving a preview of a subpart of EVS source code CRs targeted for the upcoming SA4#114-e meeting. The presented subpart will allow realistic testing of EVS in VoIP scenarios (i.e. MTSI-based services) by adding support for the rtpdump [4, 7] format and depacketization of the EVS payload format specified in Annex A of TS26.445 [3] in rtpdump files. This also includes passing of the Q-bit [6] and STI-bit [5] to the EVS decoder to allow decoding of corrupt frames or differentiate an SID_FIRST and SID_UPDATE frame. Further on, it should be mentioned that the proposed changes address the issues mentioned in [1] and [2].
2 Background

In [2], two field issues related to the handling of possibly corrupt SID frames in the AMR-WB IO/EVS decoder were described. While in [1] various bugfixes on JBM path of bitstream reading to align with the G.192 bistream reading path were already adressed, the fix was incomplete (see also the following NOTE in [1]):
Note: As SID_first frames are not signalled in G.192 format (which the EVS network simulation and the corresponding JBM path is based upon), the reference code is not able to detect such frames (…) because good zero length frames cannot be signalled.
During further testing another issue was identified, which is also based on the usage of G.192 in the EVS decoder: AMR-WB frames can get corrupted in circuit-switched networks but can still be decoded. A mechanism to signal a corrupt frame when transmitting such a frame over packet-switched RTP-based networks is the Q-bit [6]. This Q-bit is used by the legacy AMR-WB decoder but couldn’t be used by the EVS-IO decoder, because the G.192 format has no means to signal this information and thus the input to the decoder in the reference software has no mechanism to handle such marked frames.
Another similar issue is the STI-bit, which is contained in RTP payloads of EVS-IO SID frames, but cannot be stored in the G.192 format.
3 Proposed Solution
3.1	Introduction
It is proposed to add support for the RTP payload format specified in Annex A of 26.445 to the EVS decoder code bases (floating-point, fixed-point, alternative fixed-point) to overcome the limitations of G.192 and allow the decoder to consume RTP input streams. As format for the input rtpdump [4] is proposed, which has been frequently used in SA4 work (e.g. TR 26.902 [7], TS 26.114 [8]).
3.2	Functionality
The proposed RTP payload format depacker supports all EVS modes, including DTX, EVS primary and IO modes. For EVS depacketization the depacker needs to know the value of the hf-only flag normally contained within SDP, which needs to be provided explicitly to the decoder. Multiple available network captures have been used to test the proposal, further testing is however invited, especially using existing implementations in UEs and network equipment.
3.3	Additional files
The following files to add the payload depacketization and rtpdump parsing are added:
A lib_dec/evs_rtp_payload.c
A lib_dec/evs_rtp_payload.h
A lib_dec/rtpdump.c
A lib_dec/rtpdump.h
[bookmark: OLE_LINK1][bookmark: OLE_LINK2][bookmark: OLE_LINK3]3.4	Usage
The EVS decoder so far only had the option to consume EVS frames embedded in G.192 (with RTP headers but without payload format):

-VOIP : VoIP mode: RTP in G192
The following two options are then proposed to be added to instead consume the RTP payloads in rtpdump files, including the RTP headers and a payload formatted according to TS26.445 Annex A.

-VOIP_hf_only=0 : VoIP mode: EVS RTP Payload Format hf_only=0 in rtpdump
-VOIP_hf_only=1 : VoIP mode: EVS RTP Payload Format hf_only=1 in rtpdump

3.5	Related Changes
Further bit-exact refactoring has been performed to improve the EVS code to remove duplicate code and allow re-usage by all the possible formats an EVS decoder can consume (in non-VoIP mode G.192 and MIME, in VoIP mode the G.192 derived format and rtpdump).
4 Simulation / Verification

To verify the implementation a bit-exactness check was performed to compare the behavior of the rtpdump chain to the G.192 VoIP chain – the outcome of those tests confirmed bit-exact behavior. Additional tools for simulation of the rtpdump chain were used internally to pack a MIME bitstream created by the EVS encoder and simulate network behavior in the same way as the one used for G.192 streams. Simulation with the Q-bit with bit-errors becomes possible but has not been done yet.
[bookmark: OLE_LINK4][bookmark: OLE_LINK5]4.1	G.192 chain
1. create bitstream
./EVS_cod 13200 32 in.raw bitstream.g192

2. apply a network profile and convert from G.192 to G.192 VoIP format
./network_simulator_g192.exe dly_error_profile_1.dat bitstream.g192 bitstream.g192_rtp_sim trace.csv 1

3. decode
./EVS_dec -VOIP 32 bitstream.g192_rtp_sim out.raw

4.1	rtpdump chain
1. create bitstream
 * EVS storage format
 ./EVS_cod -mime 13200 32 in.raw bitstream.mime
 * AMR/AMR-WB Storage Format
 ./amrwb_cod -mime 2 in.raw bitstream.mime
2. pack bitstream (one frame per packet) into EVS RTP Payload Format
 * Compact or Header-Full format
 ./evs_rtpdump_packer bitstream.mime bitstream.rtp 1 0
 * Header-Full format only
 ./evs_rtpdump_packer bitstream.mime bitstream.rtp 1 1
3. apply a network profile
 ./network_simulator_rtpdump dly_error_profile_1.dat bitstream.rtp bitstream.rtp_sim trace.csv 1
4. decode
 ./EVS_dec -VoIP_hf_only=1 32 bitstream.rtp_sim out.raw

5 Conclusion

The proposal adds support for the rtpdump format, depacketization of the EVS payload format specified in Annex A of TS26.445, and passing of the Q-bit and STI-bit to the EVS decoder to allow decoding of corrupt frames and signalling the type of SID frame. The existing behaviour is unchanged, however new possibilities due to the more complete support for network streams arise, including e.g. depacketization of existing network captures.
Further testing is necessary and invited, this specifically includes
· testing the depacketization routine with existing network captures, e.g. created by UEs, network equipment, etc.
· simulation of IO modes with bit errors in the VoIP path

Interested parties are invited to contact the source to get a copy of the tools as described in 4.1 (evs_rtpdump_packer and network_simulator_rtpdump) or the changeset for verification.

6 References

[1] S4-200779, “Proposed Corrections to EVS Source Code”
[2] S4-200128, “Two field issues with EVS”
[3] 3GPP TS26.445, “EVS Codec Algorithmic Description”
[4] http://www.cs.columbia.edu/IRT/software/rtptools/
[5] 3GPP TS26.201 “AMR(-WB), speech codec, frame structure”
[6] RFC4867, “RTP Payload Format and File Storage Format for the Adaptive Multi-Rate (AMR) and Adaptive Multi-Rate Wideband (AMR-WB) Audio Codecs”
[7] 3GPP TR26.902, “Video codec performance”
[8] 3GPP TS26.114, “Multimedia Telephony Service for IMS”

[bookmark: _Toc517427718]

Excerpt from TR 26.902 (Annex E):

RTPDUMP file format
It was agreed that it is essential to maintain timing information with media packets. The rtpdump file format is used as it fulfils all the requirements.
The rtpdump file format has been originally proposed by Henning Schulzrinne, see http://www.cs.columbia.edu/IRT/software/rtptools/. Within the scope of this report, only the binary version of the file format is of relevance. The file is constructed as follows:
The file starts with one line of ASCII coded text, indicating:
#!rtpplay1.0 address/port\n

wherein "address" stands for an IP address (e.g. 192.168.1.2) and port stands for a port number, e.g. 1234. Neither value is used by the toolchain employed in this report. "\n" stands for carriage return/linefeed.
The ASCII header is followed by one binary header (RD_hdr_t) and one RD_packet_t structure for each received packet. All fields are in network byte order. The RTP and RTCP packets are recorded as-is.
typedef struct {
 struct timeval start; /* start of recording (GMT) */
 u_int32 source; /* network source (multicast address) */
 u_int16 port; /* UDP port */
} RD_hdr_t;

typedef struct {
 u_int16 length; /* length of packet, including this header (may
 be smaller than plen if not whole packet recorded) */
 u_int16 plen; /* actual header+payload length for RTP, 0 for RTCP */
 u_int32 offset; /* milliseconds since the start of recording */
} RD_packet_t;

		Page: 1/5
		Page: 5/5
