

	
[bookmark: _GoBack]3GPP TSG-SA WG4 Meeting #109-e	S4-200830
Online, 20 May – 3 June
	CR-Form-v12.0

	CHANGE REQUEST

	

	
	26.445
	CR
	0050
	rev
	-
	Current version:
	15.2.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	X
	Radio Access Network
	
	Core Network
	X

	

	Title:	
	Corrections of algorithmic description

	
	

	Source to WG:
	Ericsson LM, NTT DOCOMO, INC., Orange

	Source to TSG:
	S4

	
	

	Work item code:
	EVS_Codec
	
	Date:
	2020-05-18

	
	
	
	
	

	Category:
	A
	
	Release:
	Rel-15

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	[bookmark: OLE_LINK1]Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
Rel-12	(Release 12)
Rel-13	(Release 13)
Rel-14	(Release 14)
Rel-15	(Release 15)
Rel-16	(Release 16)

	
	

	Reason for change:
	Following a review of the text, errors have been identified in the main body of the text.

	
	

	Summary of change:
	Correction of errors in the text and clarification of confusing descriptions.

	
	

	Consequences if not approved:
	Inconsistencies, innaccuracies and possible ambiguities will be present in the text.

	
	

	Clauses affected:
	5.3.2.2.1, 5.3.4.2.5, 5.3.4.2.7.2, 5.5.5, 6.2.4.1.4, 6.8.3.2.7.1, 6.8.3.2.7.2, 6.8.3.3, 6.8.3.4

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	S4-200830 Initial version

Page 1

[bookmark: _Toc397881082]

[bookmark: _Toc394084321][bookmark: _Toc394330701]5.3.2.2.1	Folding and on-the-fly window decimation
The folding operations and window decimation (when applicable) are combined in the same process. To achieve perfect reconstruction ALDO windows the 48 and 25.6 kHz are irregularly decimated. The decimation consists in selecting a subset of coefficients from the initial window (48 or 25.6 kHz) at specific indices to preserve perfect reconstruction; this decimation is combined with the folding process for efficiency.
The folding process is illustrated in figure 54. The MDCT folding is performed by dividing the 40 ms time support of the ALDO window in 4 sections delimited by dotted vertical lines.
[image:]
[bookmark: _Ref394334861][bookmark: _Ref394322074][bookmark: Fig_folding_with_aldo_window]Figure 54: Folding with ALDO window.
For each frame of new input samples, a block [image:] of length [image:] is folded into a block [image:], [image:]. The ALDO window at 48 or 25.6 kHz is defined at a sampling frequency corresponding to two frames of length [image:]at 48 or 25.6 kHz ([image:]) . The ratio between [image:] and [image:] is called the decimation factor.
The folded frame is given for [image:] by:

	,	(884)

	,	(885)
where the ratio [image:] is the decimation factor and [image:] is an offset that depends on the decimation factor. The ALDO window used for decimation, decimation factor and offset are given in table 77.
[bookmark: _Ref394334738][bookmark: Table_aldo_window_used_for_decimation]Table 77: ALDO window used for decimation, decimation factor and offset parameters.
	MDCT core sampling frequency (kHz)
	ALDO window used for decimation (kHz)
	Decimation factor [image:]
	Offset [image:]

	8
	48
	6
	2

	12.8
	25.6
	2
	0

	16
	48
	3
	1

	25.6
	25.6
	1
	0

	32
	48
	3
	1

	48
	48
	1
	0

The 32 kHz sampling frequency is a special case, as the ratio between 48 and 32 kHz is not integer. For this 32 kHz case, in order to achieve perfect reconstruction, the ALDO window [image:] decimated from 48 to 16 kHz is applied to samples with even indices, the samples with odd indices are weighted by a complementary window [image:]. For the 32 kHz case, the folded frame is given for [image:] by:

	,	(886)

	,	(887)

	,	(888)

	,	(889)

where is the frame length at 16kHz, [image:] is the length of MDCT core frame at 32kHz, [image:] is the decimation factor and [image:] is the offset.

The complementary window [image:]of size is stored in ROM. To obtain the window [image:], the ALDO window at 48 kHz is decimated by 3 (with an offset of 1), the resulting decimated window at 16 kHz is considered as if it was obtained from a 32 kHz window decimated by 2 (without any offset) so that half of the samples of the 32 kHz window is known; the other half is obtained doing a linear interpolation between known samples. The combination of the 16 kHz window obtained by decimation and [image:]is such that perfect reconstruction is ensured for the overall 32 kHz window.

[bookmark: _Toc393628385][bookmark: _Toc393726322][bookmark: _Toc394084452][bookmark: _Toc394416129]5.3.4.2.5	HVQ
The HVQ mode is used only for SWB signals at 24.4 kb/s and 32 kb/s. At 24.4 kb/s it initially codes the first 224 MDCT coefficients (this corresponds to frequency range up to 5.6 kHz), while at 32 kb/s it initially codes the first 320 coefficients (this corresponds to frequency range up to 8 kHz). The major algorithmic steps at the encoder are: detect and code spectral peaks regions, code low-frequency spectral coefficients (the size of coded region depends on the remaining bits after peaks coding), code noise-floor gains for spectral coefficients outside the peaks regions, code high-frequency spectrum envelope to be used with the high-frequency noise-fill.
[…]
Variations in the number of peaks per-frame results in different number of VQs, which leads to large variation in complexity. To keep the complexity nearly constant, while achieving low quantization error, the following approach is used: the search for each [image:]is performed in a structured CB, with dynamically selected offset and size of the search region. The starting point for the search is determined by initial classification of the input shape vector, while the length of the search region dependents on the number of received shape vectors.
The codewords in the CB used for quantization of the shape vectors are order based on their distance to two pre-demined classes, with centroids [image:]and[image:]. The CB is structured in a way that the codewords closest to [image:]and most distanced to [image:]are in one side of the CB, while codewords closest to [image:] and most distanced to [image:] are clustered in the other side of the CB. The distance between the input vectors [image:]to each of the classes determines the starting point for the search. Since the codevectors in the codebook are sorted according to a distortion measure reflecting the distance between each codevectors and the centroids, the search procedure goes first over set of vectors that is likely to contain the best match.
The search space is dynamically adjusted to the number of input vectors. The maximum search space is used with 8 peaks or less at 24.4 kb/s, and 12 peaks or less at 32 kb/s. When larger numbers of peaks are to be quantized in the current frame, the search space is reduced to limit the peak complexity.

[bookmark: _Toc393281221][bookmark: _Toc393306217][bookmark: _Toc393628389][bookmark: _Toc393726326][bookmark: _Toc394084461][bookmark: _Toc394416138]5.3.4.2.7.2	PVQ split methodology
When the bits [image:]assigned for the band [image:]are above a pre-determined threshold, as described in subclause 5.3.4.2.7.2.1, an algorithm for band splitting is activated. First the input vector is split into uniform (or close to uniform) segments in a non-recursive way. Then angles[image:], which represent the ratio between energies [image:]and[image:]of a left and a right level segment, are calculated recursively. At each iteration, the level segments consist of one or several of the pre-determined segments from the initial split of the input vector. The angles are calculated from the top level (full size of the band to be quantized), and continuing towards the levels of shorter sub-vectors, i.e. shorter level segments.
[…]
The angles are used to distribute bits recursively to the already determined segments. At each iteration, the number of bits [image:] and [image:] for a left and a right level segment are derived from the available number of bits for shape coding of these segments [image:], lengths of the level segments [image:]and [image:], and the angle [image:]:
[…]

[bookmark: _Toc394436597]5.5.5	Spectral envelope diffuser
A frame loss around speech onset sometimes causes too sharp peaks at LP spectrum, and sudden power increase in concealed signal. Spectral envelope diffuser mitigates the sudden power change and provides better recovery of concealed signal. The activation flag for spectral envelope diffuser is encoded with 1 bit and transmitted as a side information. This tool is active only at 9.6, 16.4, 24.4 kbps.

The activation is based on the function of merits depending on LSF improvement counter , quantized LSF parameter of the previous frame , the extrapolated LSF obtained in the guided PLC for pitch lag at the previous frame, and a modified LSF parameter . The modified LSF parameter is calculated as follows.

		(1304)

where is the lowest number of j which satisfies the following equation.

		(1305)

		(1306)

where is computed as follows. is a threshold which equals to 1900 for 12.8 kHz internal sampling frequency, 2375 for 16 kHz internal sampling frequency.

After initialized with 0, the LSF improvement counter is computed as follows:

		(1307)

In case the following 4 equations are satisfied, the activation flag is set to 1, otherwise set to 0. equals to 90 for 12.8 kHz internal sampling frequency, 112.5 for 16 kHz internal sampling frequency. equals to 800 for 12.8 kHz internal sampling frequency, 1000 for 16 kHz internal sampling frequency.

		(1308)

		(1309)

		(1310)

		(1311)

[…]

[bookmark: _Toc394417865]6.2.4.1.4	Pre-echo attenuation
A typical artefact in transform coding known as pre-echo is observed especially when the signal energy grows suddenly, like speech onsets or music percussions. The origin of pre-echoes is explained below. The quantization noise in the frequency domain is translated into the time domain by an inverse MDCT transform and an add/overlap operation. Thus the quantization noise is spread uniformly in the MDCT synthesis window. In case of an onset, the part of the input signal preceding the onset often has a very low energy compared to the energy of the onset part. Since the quantization noise level depends on the mean energy of the frame, it can be quite high in the whole synthesis window. In this case, the signal to noise ratio (SNR) is very low (often negative) in the low energy part. The quantization noise can be audible before the onset as an extra artificial signal called pre-echo. To prevent the pre-echo artefact, an attenuation scheme is necessary when there is a significant energy increase (attack or onset) in some part of the synthesis window, and the pre-echo reduction has to be performed in the low energy part of the synthesis window preceding the onset. In the following, this low energy part preceding an onset will be referenced as "pre-echo zone". On the other hand the signal energy after pre-echo reduction should not lower than the mean energy in the preceding frames. However, if the preceding frame have low frequency spectrum, knowing that the pre-echo has often white noise like spectrum, even if the energy of the pre-echo zone is reduced to the level of the previous frames the pre-echo is still audible in the higher frequencies.
To improve the pre-echo reduction, an adaptive spectral shaping filtering is applied in the pre-echo zone up to the detected attack or onset to eliminate undesirable higher frequency pre-echo noise. This adaptive spectral shaping filter is realized by a two-band filterbank: the decoded signal is decomposed into two sub-signals according to a frequency criterion to obtain two sub-bands and a pre-echo attenuation factor is calculated in the determined pre-echo zone for each sample in both sub-bands. The attenuation factors of the sub-bands that determinate the spectral response of the filter are computed in function of several parameters of the full-band and sub-band signals as detailed below. The pre-echo attenuation is made in the sub-bands by applying these attenuation factors in the pre-echo -zone. Finally the two attenuated sub-bands are combined to obtain the pre-echo attenuated decoded signal. The pre-echo attenuation is activated for received frames, when the previous frame was also received, and when the bitrate is not higher than 32 kbit/s.

A pre-echo in the current frame can be caused by a sharp onset in the current or the next frame, as the MDCT analysis window covers these two consecutive frames. An onset in the next frame can be detected by analysing the memory of inverse MDCT that will be used in the next frame in the overlap-add operation. A discrimination of pre-echo/non-pre-echo zones and the attenuation factor computation are based on two signals of the inverse MDCT transform: on the decoded output full-band signal , and on the first un-windowed memory of inverse MDCT , that will be used in the next frame in the overlap-add operation to synthesize the output content for the next frame and the pre-echo reduction is done in pre-echo zones preceding the onsets.

Decomposition in two sub-bands

The decoded signal is decomposed in a lower and an upper frequency band sub-signals. These signals are computed by applying an adaptive zero-delay FIR filter with transfer function in low-band, with = 0.25 in the current frame and 0 otherwise; the high-band is given by the complementary filter. The first, lower band sub-signal is obtained by a first filtering of the full-band signal by the low-pass filter

		(1896)
and the second, higher band sub-signal is obtained by subtracting the lower band sub-signal from the decoded signal:

		(1897)

For the memory part only the higher-band component is computed as

		(1898)

Discrimination procedure of pre-echo/non-pre-echo zones	

The discrimination procedure between pre-echo zones and non-pre-echo zones is based on the concatenated signal formed from , and , . This signal is divided in sub-blocks and its temporal envelope is computed.

The current frame part of the concatenated signal, , is divided into sub-blocks of samples where =8 (2.5 ms sub-blocks). The temporal envelope of this signal is computed as successive sub-block energies.

	, 	(1899)
The memory part of the concatenated signal forms one sub-block, its energy is computed as

		(1900)
The energy of the first half and the first ¾ samples of each sub-blocks of the current frame are also memorized:

	, 	(1901)

	, 	(1902)
The temporal envelope of the higher band in the current frame is also computed:

	, 	(1903)

Then, , is then modified as follows:

		(1904)

In this paragraph, index is used for samples, and index is used for sub-blocks.
In the concatenated signal the sub-block with maximal energy, including the memory sub-block, is also searched:

		(1905)

The transition of the temporal envelope to a high-energy zone is detected in the sub-block with the index given by:

		(1906)

Note that when =0 either no pre-echo attenuation is made or the pre-echo attenuation of the previous frame is finished on the first samples of the current frame.

The zero-crossing rate , is also computed for each sub-block. A zero-crossing is detected when the product of two consecutive samples is smaller or equal to 0. The parameter , is defined as the number of times when the following condition is verified:

	, 	(1907)
The zero crossings between two consecutive sub-blocks count for the next sub-block. The zero crossing rate of the memory part is also computed.

The maximum length without zero crossing , is also stored for each sub-block. A period without zero crossing that covers a sub-block border is taken into account for the previous sub-block.

The maximal energy is compared to that of the preceding sub-blocks:

	, 	(1908)

The low energy sub-blocks preceding the sub-block in which a transition has been detected with > 16 are determined as pre-echo zone. However in the following cases the sub-block is considered as non-pre-echo zone:

if
or

if and
or

if and
where, computed in the previous frame and memorised,

		(1909)

and = 10 for narrowband signals and 16 otherwise.

Even the previous sub-blocks are considered as non-pre-echo zone if their energy is higher than .

The pre-echo attenuation of low energy sub-block determined as pre-echo zone is made by multiplying the two sub-band signals, the lower band and the higher band by attenuation factors and respectively, where and are determined as a function of the temporal envelope of the concatenated signal ,.

For each sample of the pre-echo zone sub-blocks, these gains are set to 0.01 if > 32 and to 0.1 otherwise. For the other sub-blocks, the initial gains are set to 1, they form the non-pre-echo zone. Following this is set as the index of the first non-echo sub-block (where the initial gain is equal to 1).

A false alarm detection is made at this point. If the last pre-echo attenuation gain in the previous frame is higher than 0.5 and in the current frame only one sub-block has attenuation gain of 0.1 and the other gains are 0, is set to 0.
The initial pre-echo attenuation gains depend also on the energy of the previous frame: a minimal attenuation value for each pre-echo zone sub-block and for both sub-bands are also fixed as a function of the temporal envelope of the reconstructed signal of the previous frame. This value is fixed in a way that the attenuated sub-block energy in the sub-band cannot be lower than the pre-echo attenuation gain compensated mean energy of the previous frame in that sub-band, to preserve background noise energy. In the lower band:

		(1910)

for and where was computed in the previous frame as:

		(1911)

However is set to 1 if or .
In a similar way the initial pre-echo attenuation gain for the higher band signal is computed as:

		(1912)

for where

		(1913)

Note that the initial attenuation gain in both the lower band and the higher band are identical for each samples of a sub-block.

Before applying the pre-echo attenuation gains the position of the onset is refined. If the onset was detected in the current frame, each sub frames from index to are divided into sub-sub-blocks where =4 if the sampling frequency is 8 kHz and =8 otherwise. If = 0 only the first sub-block is considered.
The energy of these sub-sub-blocks is computed:

	, 	(1914)
where

		(1915)
and

		(1916)

When the onset was detected in the future memory part , only the first samples are examined and and

	, 	(1917)
The maximum of these values is searched:

	, 	(1918)

The values are compared to adaptive thresholds. The first one is independent of the sub-sub-block index:

		(1919)
The second one is computed as:

		(1920)

where

		(1921)

If and this value is modified as:

		(1922)

Initially the starting position of the onset for both the lower and the higher band is the beginning of the sub-block . This position is delayed by samples by sub-sub-blocks as long as . The pre-echo attenuation gain of these samples moved from the non-pre-echo zone to the pre-echo-zone is set equal to the gain of last sample of the original pre-echo zone and respectively in the 2 sub-bands. In the following these new samples in the pre-echo zone are considered as the part of the last pre-echo zone sub-block (index), the length of this sub-block can be longer than .
To avoid false pre-echo detection, the energies of the last 2 or 3 sub-blocks preceding the onset is verified for both the full-band and the high-band signals: the regression coefficient for these sub-blocks energies is computed by the least squares estimation technique and compared to thresholds. If at least one regression coefficient is lower to its threshold the pre-echo attenuation is inhibited. In fact it is checked whether the sub-blocks preceding the onset have stable or increasing energy, this is always true for pre-echos. For easy comparison to threshold the regression coefficients are normalised by the sub-band energies when the threshold is different to 0. If the threshold is 0, only the sign of the regression coefficient is checked, no normalisation is needed.
When the onset is detected in the first or second sub-block this verification is not possible.

When the onset is detected in the third sub-block only the high-band regression coefficient is computed and compared to the threshold . As only the sign is checked here no normalization is needed for the regression coefficient:

If < the pre-echo attenuation in the pre-echo zone is inhibited.

When the onset is detected in the fourth or later sub-block both the full-band regression coefficient and the normalized high-band regression coefficient are computed on the last 3 sub-blocks preceding the onset and they are compared to the thresholds and respectively. Let’s note the index of the sub-block where the onset is detected .
In the full-band only the sign is checked, no normalization of the regression coefficient is needed:

In the higher band the normalized regression coefficient is estimated as:

The comparison is equivalent to :

If the < or < the pre-echo attenuation in the pre-echo zone is inhibited.

The pre-echo attenuation functions and are stair-like, the gain is constant within a sub-block. To avoid annoying noise due to this discontinuity, the final pre-echo attenuation gain for the lower band is obtained by linear smoothing of the initial pre-echo attenuation gain introducing intermediate levels between the gains of consecutive sub-blocks. For narrow band signals = 20, for other bandwidths = 4. This smoothing is done before the detected onset position and at the beginning of each sub-block. For the first sub-block the smoothing is done between the memorized last gain value of the previous frame and the gain of the first sub-block of the current frame. If the onset position is detected in the next frame no smoothing is done at the end of the frame, this will be done at the beginning of the next frame. For example at the beginning sub-block , and if the gains determined for the sub-blocks and are and respectively, for wide band signals (= 4) the gains are smoothed in the following way:
Before smoothing:
	index
	…
	

	

	

	

	

	

	

	

	…

	gain
	…
	

	

	

	

	

	

	

	

	…

After smoothing:

	index
	…
	

	

	

	

	

	

	

	

	…

	gain
	…
	

	

	

	

	

	

	

	

	…

In the higher band no smoothing is necessary, .
In both sub-band, the pre-echo is attenuated in the pre-echo-zone by applying these gains to the sub-signals:

		(1923)

		(1924)

The final pre-echo attenuated synthesized signal is obtained by combining the two attenuated sub-signals:

		(1925)

6.8.3.2.7.1	6.6, 8.85, 12.65, 14.25, 15.85, 18.25, 19.85 or 23.05 kbit/s modes

The signal , is scaled by sub-frame of 5 ms as follows:

	, 	(2074)

where =0,1,2,3 is the sub-frame index and

		(2075)
with

		(2076)

and = 0.01. The sub-frame gain can be further written as:

		(2077)

which shows that this gain is used to have in the same ratio of sub-frame vs frame energy than in the low-band signal .
The scaled extended excitation signal is then computed for as follows:
		(2077a)
where is given in Eqs. 2037 and 2041 and is the extended excitation signal.

6.8.3.2.7.2	23.85 kbit/s mode
In the 23.85 kbit/s mode, a high-frequency (HF) gain is transmitted at a bit rate of 0.8 kbit/s (4 bits per 5 ms sub-frame). This information is transmitted only at 23.85 kbit/s and it used in EVS AMR-WB IO to improve quality by adjusting the excitation gain.
To be able to use the HF gain information, the excitation has to be converted to a signal domain similar to AMR-WB high-band coding. To do so the energy of the excitation is adjusted in each subframe as follows:

	, 	(2078)

where the sub-frame gain is computed as:

		(2079)

The factor 5 in the the denominator is used to compensate the difference in bandwith between the signal and the signal , noting that in AMR-WB the HF excitation is a white noise in the 0-8000 Hz band.

The 4-bit index in each sub-frame, , transmitted at 23.85 kbit/s is demultiplexed from the bitstream and decoded as follows:

		(2080)

where is the codebook used for HG gain quantization in AMR-WB, as defined in table 175.
[bookmark: tab_highband_gain_codebook_amrwb]Table 175: AMR-WB gain codebook for high band
	

	

	

	

	0
	0.110595703125000
	8
	0.342102050781250

	1
	0.142608642578125
	9
	0.372497558593750

	2
	0.170806884765625
	10
	0.408660888671875

	3
	0.197723388671875
	11
	0.453002929687500

	4
	0.226593017578125
	12
	0.511779785156250

	5
	0.255676269531250
	13
	0.599822998046875f

	6
	0.284545898437500
	14
	0.741241455078125

	7
	0.313232421875000
	15
	0.998779296875000

Then, the signal is scaled according to this decoded HF gain as follows:

	, 	(2081)

The energy of the excitation is further adjusted by sub-frame under the following conditions. A factor is computed:

		(2082)

Here the term 0.6 corresponds to the average magnitude ratio between the frequency response of the de-emphasis filter in the 5000-6400 Hz band. Therefore, the term represents the energy of the high-band excitation that would be obtained at 23.05 kbit/s.

Based on the tilt information of the low-band signal, the scaled extended excitation signal is then computed for as follows:

If >1 or <0:

		(2083)
Otherwise:

		(2084)

6.8.3.3	LP filter for the high frequency band

Predict tThe high-band LP synthesis filter is derived from using the weighted low-band LP synthesis filter as follows:

		(2085)

where is the interpolated LP synthesis filter in each 5-ms sub-frame and =0.9 at 6.6 kbit/s and 0.6 at other modes (from 8.85 to 23.85 kbit/s). has been computed analysing signal with the sampling rate of 12.8 kHz but it is now used for a 16 kHz signal.
6.8.3.4	High band synthesis

The scaled extended excitation signal in high-band is filtered by to obtain the decoded high-band signal, which is added to synthesized low band signal to produce the synthesized output signal.

*** End of changes ***

image59.wmf
mean

Th

oleObject23.bin

image60.wmf
2

16

1

]

1

[

]

1

[

2

16

1

]

1

[

]

1

[

~

15

.

1

å

å

=

-

-

=

-

-

-

>

-

j

j

j

j

j

j

w

w

w

w

&

oleObject24.bin

image61.wmf
int

4

1

]

2

[

4

1

]

1

[

4

1

Th

j

j

j

j

>

÷

ø

ö

ç

è

æ

-

å

å

=

-

=

-

w

w

oleObject25.bin

image62.wmf
mean

j

j

Th

>

÷

ø

ö

ç

è

æ

å

=

-

4

1

]

2

[

4

1

w

oleObject26.bin

image63.wmf
2

>

lc

oleObject27.bin

image64.wmf
)

(

)

(

n

x

r

oleObject28.bin

image65.wmf
1

-

,...,

0

L

n

=

oleObject29.bin

image66.wmf
L

L

premem

32

7

=

oleObject30.bin

image67.wmf
)

(

~

)

(

)

(

L

n

x

n

x

r

wq

premem

+

=

oleObject31.bin

image68.wmf
1

-

,...,

0

premem

L

n

=

oleObject32.bin

image69.wmf
)

(

)

(

n

x

r

oleObject33.bin

image70.wmf
ï

ï

î

ï

ï

í

ì

-

=

+

-

-

=

+

+

+

-

=

+

+

+

-

=

-

-

-

-

-

1

)

(

5

.

0

)

1

(

25

.

0

2

,

,

1

)

1

(

25

.

0

)

(

5

.

0

)

1

(

25

.

0

0

)

1

(

25

.

0

)

(

5

.

0

)

1

(

25

.

0

)

(

)

(

)

1

(

)

1

(

)

(

)

1

(

)

1

(

)

(

)

1

(

L

n

n

x

n

x

L

n

n

x

n

x

n

x

n

n

x

n

x

L

x

n

x

r

r

r

r

r

r

r

r

LB

K

oleObject34.bin

image71.wmf
)

(

)

(

)

(

)

(

n

x

n

x

n

x

LB

r

HB

-

=

oleObject35.bin

image72.wmf
)

(

n

x

premem

oleObject36.bin

image73.wmf
ï

ï

î

ï

ï

í

ì

-

=

+

-

-

=

+

-

+

-

-

=

+

-

+

-

-

=

-

1

)

(

5

.

0

)

1

(

25

.

0

2

,

,

1

)

1

(

25

.

0

)

(

5

.

0

)

1

(

25

.

0

0

)

1

(

25

.

0

)

(

5

.

0

)

1

(

25

.

0

)

(

)

1

(

_

premem

premem

premem

premem

premem

premem

premem

premem

premem

r

LB

premem

L

n

n

x

n

x

L

n

n

x

n

x

n

x

n

n

x

n

x

L

x

n

x

K

oleObject37.bin

image74.wmf
)

(

)

(

n

x

r

oleObject38.bin

image75.wmf
1

-

,...,

0

L

n

=

oleObject39.bin

image76.wmf
)

(

~

)

(

)

(

L

n

x

n

x

r

wq

premem

+

=

oleObject40.bin

image77.wmf
1

-

,...,

0

premem

L

n

=

oleObject41.bin

image78.wmf
)

(

)

(

n

x

r

oleObject42.bin

image79.wmf
1

-

,...,

0

L

n

=

oleObject43.bin

image80.wmf
sf

N

oleObject44.bin

image81.wmf
sf

sf

N

L

L

/

=

oleObject45.bin

image82.wmf
sf

N

oleObject46.bin

image83.wmf
)

(

i

Es

MDCT

oleObject47.bin

image84.wmf
[

]

(

)

å

-

+

=

=

1

1

.

.

2

)

(

)

(

)

(

i

L

i

L

n

r

MDCT

sf

sf

n

x

i

Es

oleObject48.bin

image85.wmf
1

,

,

0

-

=

sf

N

i

K

oleObject49.bin

image86.wmf
[

]

å

-

=

=

1

0

2

)

(

)

(

premem

L

n

premem

sf

MDCT

n

x

N

Es

oleObject50.bin

image87.wmf
[

]

(

)

å

-

+

+

=

=

1

2

/

1

.

.

2

)

(

_

)

(

)

(

sf

sf

sf

L

i

L

i

L

n

r

h

MDCT

n

x

i

Es

oleObject51.bin

image88.wmf
1

,

,

0

-

=

sf

N

i

K

oleObject52.bin

image89.wmf
[

]

(

)

å

-

+

+

=

=

1

4

/

3

1

.

.

2

)

(

_

)

(

)

(

sf

sf

sf

L

i

L

i

L

n

r

tq

MDCT

n

x

i

Es

oleObject53.bin

image90.wmf
1

,

,

0

-

=

sf

N

i

K

oleObject54.bin

image91.wmf
[

]

(

)

å

-

+

=

=

1

1

.

.

2

)

(

_

)

(

)

(

i

L

i

L

n

r

hb

MDCT

sf

sf

hb

n

x

i

Es

oleObject55.bin

image92.wmf
1

,

,

0

-

=

sf

N

i

K

oleObject56.bin

image93.wmf
)

(

_

i

Es

h

MDCT

oleObject57.bin

image94.wmf
1

,

,

0

-

=

sf

N

i

K

oleObject58.bin

image95.wmf
(

)

î

í

ì

<

-

=

otherwise

)

(

2

/

)

(

)

(

if

)

(

)

(

2

)

(

_

_

_

i

Es

i

Es

i

Es

i

Es

i

Es

i

Es

MDCT

MDCT

h

MDCT

hb

MDCT

MDCT

hb

MDCT

oleObject59.bin

image96.wmf
n

oleObject60.bin

image97.wmf
i

oleObject61.bin

image98.wmf
)

(

max

,

,

0

i

Es

Max

MDCT

N

i

Es

sf

K

=

=

oleObject62.bin

image99.wmf
Es

Maxind

oleObject63.bin

image100.wmf
)

(

max

arg

,

,

0

i

Es

Maxind

MDCT

N

i

Es

sf

K

=

=

oleObject64.bin

image101.wmf
Es

Maxind

oleObject65.bin

image102.wmf
)

(

i

zcr

oleObject66.bin

image103.wmf
1

,

,

0

-

=

sf

N

i

K

oleObject67.bin

image104.wmf
)

(

i

zcr

oleObject68.bin

image105.wmf
1

,

,

0

-

=

sf

N

i

K

oleObject69.bin

image106.wmf
0

)

(

)

(

)

(

)

(

£

+

+

n

iN

x

n

iN

x

sf

r

sf

r

oleObject70.bin

image107.wmf
1

,

,

1

-

=

sf

L

n

K

oleObject71.bin

image108.wmf
)

(

i

nzcr

oleObject72.bin

image1.png

image109.wmf
1

,

,

0

-

=

sf

N

i

K

oleObject73.bin

image110.wmf
Es

Max

oleObject74.bin

image111.wmf
)

(

)

(

i

Es

Max

i

r

MDCT

Es

Es

=

oleObject75.bin

image112.wmf
1

,

,

0

-

=

Es

Maxind

i

K

oleObject76.bin

image113.wmf
()

Es

ri

oleObject77.bin

image2.wmf
L

T

2

image114.wmf
(

)

500000

100

)

(

_

_

+

>

nc

prev

hb

MDCT

Es

i

Es

oleObject78.bin

image115.wmf
(

)

500000

100

)

(

_

_

+

>

nc

prev

hb

MDCT

Es

i

Es

oleObject79.bin

image116.wmf
zcr

lim

i

zcr

<

)

(

oleObject80.bin

image117.wmf
(

)

500000

100

)

(

_

_

+

>

nc

prev

hb

MDCT

Es

i

Es

oleObject81.bin

image118.wmf
)

(

)

(

6

_

i

Es

i

Es

MDCT

tq

MDCT

<

oleObject82.bin

image3.wmf
L

2

image119.wmf
÷

÷

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

ç

ç

è

æ

=

å

å

-

=

-

=

sf

N

N

i

MDCT

sf

N

i

MDCT

nc

prev

N

i

Es

N

i

Es

Es

sf

sf

sf

1

2

/

1

0

_

)

(

2

,

)

(

max

oleObject83.bin

image120.wmf
zcr

lim

oleObject84.bin

image121.wmf
()/2

MDCT

Esi

oleObject85.bin

image122.wmf
)

(

n

x

LB

oleObject86.bin

image123.wmf
)

(

n

x

HB

oleObject87.bin

image4.wmf
)

(

~

n

x

image124.wmf
)

(

n

g

pre

oleObject88.bin

image125.wmf
)

(

_

n

g

hb

pre

oleObject89.bin

image126.wmf
)

(

n

g

pre

oleObject90.bin

image127.wmf
)

(

_

n

g

hb

pre

oleObject91.bin

image128.wmf
)

(

i

Es

MDCT

oleObject92.bin

image5.wmf
1

,

,

0

-

=

L

n

K

image129.wmf
sf

N

i

,

,

0

K

=

oleObject93.bin

image130.wmf
)

(

i

r

Es

oleObject94.bin

image131.wmf
Es

Maxind

2

oleObject95.bin

image132.wmf
Es

Maxind

2

oleObject96.bin

image133.wmf
ï

ï

ï

ï

ï

î

ï

ï

ï

ï

ï

í

ì

£

£

<

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

÷

÷

ø

ö

ç

ç

è

æ

>

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

÷

÷

ø

ö

ç

ç

è

æ

=

-

=

-

=

16

)

(

if

1

32

)

(

16

if

1

,

)

(

min

,

1

.

0

max

32

)

(

if

1

,

)

(

min

,

01

.

0

max

)

(

1

2

,

,

0

1

2

,

,

0

'

i

r

i

r

i

Es

Es

i

r

i

Es

Es

n

g

ES

ES

MDCT

prev

Maxind

i

ES

MDCT

prev

Maxind

i

pre

Es

Es

K

K

oleObject97.bin

image6.wmf
N

image134.wmf
(

)

1

1

.

,

,

.

-

+

=

i

sf

L

i

sf

L

n

K

oleObject98.bin

image135.wmf
prev

Es

oleObject99.bin

image136.wmf
÷

÷

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

ç

ç

è

æ

=

å

å

å

-

-

=

-

=

-

=

2

)

(

2

,

)

.

(

)

(

2

,

)

.

(

)

(

max

1

2

1

2

/

2

'

1

0

2

'

sf

sf

sf

sf

sf

N

N

i

MDCT

sf

N

N

i

sf

pre

MDCT

sf

N

i

sf

pre

MDCT

prev

i

Es

N

i

L

g

i

Es

N

i

L

g

i

Es

Es

oleObject100.bin

image137.wmf
)

(

'

n

g

pre

oleObject101.bin

image138.wmf
2

/

)

(

zcr

lim

i

zcr

<

oleObject102.bin

image7.wmf
L

N

³

image139.wmf
24

/

)

(

max

L

i

nzcr

>

oleObject103.bin

image140.wmf
ï

ï

ï

ï

ï

î

ï

ï

ï

ï

ï

í

ì

£

£

<

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

÷

÷

ø

ö

ç

ç

è

æ

>

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

÷

÷

ø

ö

ç

ç

è

æ

=

-

=

-

=

16

)

(

if

1

32

)

(

16

if

1

,

)

(

min

,

1

.

0

max

32

)

(

if

1

,

)

(

min

,

01

.

0

max

)

(

_

_

1

2

,

,

0

_

_

1

2

,

,

0

'

_

i

r

i

r

i

Es

Es

i

r

i

Es

Es

n

g

ES

ES

hb

MDCT

hb

prev

Maxind

i

ES

hb

MDCT

hb

prev

Maxind

i

hb

pre

Es

Es

K

K

oleObject104.bin

image141.wmf
(

)

1

1

.

,

,

.

-

+

=

i

sf

L

i

sf

L

n

K

oleObject105.bin

image142.wmf
÷

÷

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

ç

ç

è

æ

=

å

å

å

-

-

=

-

=

-

=

2

)

(

2

,

)

.

(

)

(

2

,

)

.

(

)

(

max

1

2

_

1

2

/

2

'

_

_

1

0

2

'

_

_

_

sf

sf

sf

sf

sf

N

N

i

hb

MDCT

sf

N

N

i

sf

hb

pre

hb

MDCT

sf

N

i

sf

hb

pre

hb

MDCT

hb

prev

i

Es

N

i

L

g

i

Es

N

i

L

g

i

Es

Es

oleObject106.bin

image143.wmf
Es

Maxind

2

oleObject107.bin

image8.wmf
N

image144.wmf
1

-

sf

N

oleObject108.bin

image145.wmf
ssf

N

oleObject109.bin

image146.wmf
ssf

N

oleObject110.bin

image147.wmf
ssf

N

oleObject111.bin

image148.wmf
Es

Maxind

2

oleObject112.bin

image9.wmf
L

image149.wmf
[

]

å

-

+

+

+

=

=

1

)

1

.(

2

.

.

2

.

2

)

(

)

(

)

(

j

L

Maxind

L

j

L

Maxind

L

n

r

MDCT

ssf

Es

sf

ssf

Es

sf

n

x

j

Eshr

oleObject113.bin

image150.wmf
1

,

,

0

-

=

ssf

Num

j

K

oleObject114.bin

image151.wmf
ssf

sf

ssf

N

L

L

=

oleObject115.bin

image152.wmf
(

)

î

í

ì

-

=

otherwise

2

0

=

2

if

ssf

Es

sf

Es

ssf

ssf

N

Maxind

N

Maxind

N

Num

oleObject116.bin

image153.wmf
)

(

n

x

premem

oleObject117.bin

image10.wmf
1

2

/

,

,

0

-

=

L

n

K

image154.wmf
sf

L

oleObject118.bin

image155.wmf
ssf

ssf

N

Num

=

oleObject119.bin

image156.wmf
[

]

å

-

+

=

=

1

)

1

.(

.

2

)

(

)

(

j

L

j

L

n

premem

MDCT

ssf

ssf

n

x

j

Eshr

oleObject120.bin

image157.wmf
1

,

,

0

-

=

ssf

Num

j

K

oleObject121.bin

image158.wmf
(

)

)

(

max

,

,

0

max

j

Eshr

Eshr

MDCT

Num

j

ssf

K

=

=

oleObject122.bin

image11.wmf
(

)

(

)

2

2

1

33

()1

22

1

33

1

22

La

La

nN

LN

xnTnhd

L

nN

LN

Tnhd

L

+

=----+

+

-+-+-

æö

éù

æö

ç÷

ç÷

êú

èø

ëû

èø

æö

éù

æö

ç÷

ç÷

êú

èø

ëû

èø

%

image159.wmf
1

,

,

0

-

=

ssf

Num

j

K

oleObject123.bin

image160.wmf
)

(

j

Eshr

MDCT

oleObject124.bin

image161.wmf
8

max

1

Eshr

Thres

MDCT

=

oleObject125.bin

image162.wmf
ï

ï

ï

ï

ï

ï

ï

ï

î

ï

ï

ï

ï

ï

ï

ï

ï

í

ì

>

>

÷

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

ç

è

æ

+

+

-

=

>

>

=

÷

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

ç

è

æ

+

+

=

=

=

å

å

-

=

-

=

0

and

0

2

if

,

1

)

(

4

)

1

2

(

max

0

and

0

2

if

)

),

0

(

max(

0

and

0

2

if

,

1

)

(

4

max

0

and

0

2

if

)

),

0

(

max(

)

(

_

1

0

_

1

0

_

_

2

j

Maxind

Es

j

k

Eshr

Maxind

Eshr

j

Maxind

mcrit

Eshr

j

Maxind

Es

j

k

Eshr

Es

j

Maxind

Es

Eshr

j

Thres

Es

nc

prev

j

k

MDCT

Es

MDCT

Es

MDCT

Es

nc

prev

j

k

MDCT

nc

prev

Es

nc

prev

MDCT

MDCT

oleObject126.bin

image163.wmf
(

)

sf

Es

pre

Es

MDCT

L

Maxind

g

Maxind

Es

mcrit

)

1

2

(

).

1

2

(

'

-

-

=

oleObject127.bin

oleObject1.bin

image164.wmf
mcrit

Max

Es

>

80

/

oleObject128.bin

image165.wmf
zcr

Es

lim

Maxind

zcr

>

)

2

(

oleObject129.bin

image166.wmf
80

/

Es

Max

mcrit

=

oleObject130.bin

image167.wmf
Es

Maxind

2

oleObject131.bin

image168.wmf
ssf

L

oleObject132.bin

image12.wmf
(

)

(

)

22

11

2

LaLa

LNN

xnTnhndTLnhNnd

LL

+=+------

æöæö

æöéùéù

ç÷

ç÷ç÷

êúêú

èøëûëû

èøèø

%

image169.wmf
))

(

,

min(

)

(

2

1

j

Thres

Thres

j

Eshr

MDCT

MDCT

MDCT

<

oleObject133.bin

image170.wmf
(

)

sf

Es

pre

L

Maxind

g

)

1

2

(

'

-

oleObject134.bin

image171.wmf
(

)

sf

Es

hb

pre

L

Maxind

g

)

1

2

(

'

_

-

oleObject135.bin

image172.wmf
1

2

-

Es

Maxind

oleObject136.bin

image173.wmf
1

2

-

Es

Maxind

oleObject137.bin

oleObject2.bin

image174.wmf
sf

L

oleObject138.bin

image175.wmf
_2

prehb

b

oleObject139.bin

image176.wmf
2

0

hb

thpre

=

oleObject140.bin

image177.wmf
_2__

(1)(0)

prehbMDCThbMDCThb

bEsEs

=-

oleObject141.bin

oleObject142.bin

image178.wmf
2

hb

thpre

image13.wmf
L

N

/

oleObject143.bin

image179.wmf
3

pre

b

oleObject144.bin

image180.wmf
3

prehbnorm

b

oleObject145.bin

image181.wmf
3

0

thpre

=

oleObject146.bin

image182.wmf
3

0.2

hb

thpre

=

oleObject147.bin

image183.wmf
, 2

idid

>

image14.wmf
d

oleObject148.bin

image184.wmf
3

(1)(3)

preMDCTMDCT

bEsidEsid

=---

oleObject149.bin

image185.wmf
(

)

(

)

__

3

3(1)(3)

2(1)(2)(3)

MDCThbMDCThb

prehbnorm

MDCThbMDCThbMDCThb

EsidEsid

b

EsidEsidEsid

=

-+-+-

oleObject150.bin

image186.wmf
3

0.2

prehbnorm

b

<

oleObject151.bin

image187.wmf
(

)

2

(1)(3)(1)(2)(3)

15

MDCThbMDCThbMDCThbMDCThbMDCThb

EsidEsidEsidEsidEsid

---<-+-+-

oleObject152.bin

oleObject153.bin

image15.wmf
L

N

d

f

/

=

image188.wmf
3

thpre

oleObject154.bin

oleObject155.bin

image189.wmf
3

hb

thpre

oleObject156.bin

image190.wmf
)

(

'

n

g

pre

oleObject157.bin

image191.wmf
)

(

'

_

n

g

hb

pre

oleObject158.bin

image192.wmf
)

(

n

g

pre

image16.wmf
d

oleObject159.bin

image193.wmf
)

(

'

n

g

pre

oleObject160.bin

image194.wmf
smoothlen

oleObject161.bin

image195.wmf
smoothlen

oleObject162.bin

image196.wmf
smoothlen

oleObject163.bin

image197.wmf
i

image17.wmf
)

(

n

h

a

oleObject164.bin

image198.wmf
1

,

,

1

-

=

sf

N

i

K

oleObject165.bin

image199.wmf
1

i

-

oleObject166.bin

image200.wmf
i

oleObject167.bin

image201.wmf
1

g

oleObject168.bin

image202.wmf
2

g

image18.wmf
comp

h

oleObject169.bin

image203.wmf
smoothlen

oleObject170.bin

image204.wmf
2

.

-

sf

L

i

oleObject171.bin

image205.wmf
1

.

-

sf

L

i

oleObject172.bin

image206.wmf
sf

L

i

.

oleObject173.bin

image207.wmf
1

.

+

sf

L

i

image19.wmf
1

4

/

,

,

0

-

=

L

n

K

oleObject174.bin

image208.wmf
2

.

+

sf

L

i

oleObject175.bin

image209.wmf
3

.

+

sf

L

i

oleObject176.bin

image210.wmf
4

.

+

sf

L

i

oleObject177.bin

image211.wmf
5

.

+

sf

L

i

oleObject178.bin

image212.wmf
1

g

image20.wmf
1616

22

33

33

(2)2112

2222

LcompLcomp

NN

LL

xnTnhnTnhn

=------++

æöæö

æöæö

ç÷ç÷

ç÷ç÷

èøèø

èøèø

%

oleObject179.bin

image213.wmf
1

g

oleObject180.bin

image214.wmf
2

g

oleObject181.bin

image215.wmf
2

g

oleObject182.bin

image216.wmf
2

g

oleObject183.bin

image217.wmf
2

g

oleObject3.bin

oleObject184.bin

image218.wmf
2

g

oleObject185.bin

image219.wmf
2

g

oleObject186.bin

image220.wmf
2

.

-

sf

L

i

oleObject187.bin

image221.wmf
1

.

-

sf

L

i

oleObject188.bin

image222.wmf
sf

L

i

.

image21.wmf
(

)

16

2

16

2

3

3

(21)2111

22

3

3

2111

22

La

La

N

L

xnTnhndd

f

N

L

Tnhndd

f

+=--+---+

-++++--

æö

æö

æö

ç÷

ç÷

ç÷

èø

èø

èø

æö

æö

æö

ç÷

ç÷

ç÷

èø

èø

èø

%

oleObject189.bin

image223.wmf
1

.

+

sf

L

i

oleObject190.bin

image224.wmf
2

.

+

sf

L

i

oleObject191.bin

image225.wmf
3

.

+

sf

L

i

oleObject192.bin

image226.wmf
4

.

+

sf

L

i

oleObject193.bin

image227.wmf
5

.

+

sf

L

i

oleObject4.bin

oleObject194.bin

image228.wmf
1

g

oleObject195.bin

image229.wmf
1

g

oleObject196.bin

image230.wmf
5

4

2

1

g

g

+

oleObject197.bin

image231.wmf
5

2

3

2

1

g

g

+

oleObject198.bin

image232.wmf
5

3

2

2

1

g

g

+

image22.wmf
(

)

(

)

(

)

(

)

(

)

2216

22211

2

LaLa

L

xnTnhnddTLnhNndd

ff

+=+------

æö

ç÷

èø

%

oleObject199.bin

image233.wmf
5

4

2

1

g

g

+

oleObject200.bin

image234.wmf
2

g

oleObject201.bin

image235.wmf
2

g

oleObject202.bin

image236.wmf
)

(

)

(

'

_

_

n

g

n

g

hb

pre

hb

pre

=

oleObject203.bin

image237.wmf
)

(

)

(

)

(

_

n

x

n

g

n

x

LB

pre

pre

LB

=

oleObject5.bin

oleObject204.bin

image238.wmf
)

(

)

(

)

(

_

_

n

x

n

g

n

x

HB

hb

pre

pre

HB

=

oleObject205.bin

image239.wmf
)

(

)

(

n

x

r

pre

oleObject206.bin

image240.wmf
)

(

)

(

)

(

_

_

)

(

n

x

n

x

n

x

pre

HB

pre

LB

r

pre

+

=

oleObject207.bin

image241.wmf
(

)

n

u

HB

oleObject208.bin

image242.wmf
320

,

,

0

L

=

n

image23.wmf
(

)

(

)

(

)

(

)

(

)

216

21212111

2

2

compLcomp

L

L

xnTnhnTLnhNn

++=+--+---

æö

ç÷

èø

%

oleObject209.bin

image243.wmf
)

(

)

(

)

(

'

1

n

u

i

g

n

u

HB

HB

HB

=

oleObject210.bin

image244.wmf
1

)

1

(

80

,

,

80

-

+

=

i

i

n

L

oleObject211.bin

image245.wmf
m

oleObject212.bin

image246.wmf
)

(

)

(

)

(

2

3

1

i

e

i

e

i

g

HB

=

oleObject213.bin

image247.wmf
å

å

å

å

=

=

=

=

+

+

=

+

+

=

+

+

=

255

0

2

319

0

2

1

3

79

0

2

2

63

0

2

1

)

(

)

(

)

(

)

(

)

80

(

)

(

)

64

(

)

(

n

n

HB

n

HB

n

n

u

n

u

i

e

i

e

i

n

u

i

e

i

n

u

i

e

e

e

e

e

oleObject6.bin

oleObject214.bin

image248.wmf
e

oleObject215.bin

image249.wmf
)

(

1

m

g

HB

oleObject216.bin

image250.wmf
å

å

å

å

=

=

=

=

+

+

+

+

+

+

=

319

0

2

79

0

2

255

0

2

63

0

2

1

)

(

)

80

(

)

(

)

64

(

)

(

n

HB

n

HB

n

n

HB

n

u

i

n

u

n

u

i

n

u

i

g

e

e

e

e

oleObject217.bin

image251.wmf
)

(

'

n

u

HB

oleObject218.bin

image252.wmf
)

(

n

u

image24.wmf
16

N

oleObject219.bin

image253.wmf
)

(

'

)

(

)

(

2

1

n

u

i

g

n

u

HB

HB

HB

=

oleObject220.bin

image254.wmf
1

)

1

(

80

,

,

80

-

+

=

i

m

n

L

oleObject221.bin

image255.wmf
)

(

2

i

g

HB

oleObject222.bin

image256.wmf
å

å

=

=

+

+

=

79

0

2

63

0

2

2

)

80

(

'

.

5

)

64

(

)

(

n

HB

n

HB

i

n

u

i

n

u

i

g

oleObject223.bin

image257.wmf
)

(

n

u

oleObject7.bin

oleObject224.bin

image258.wmf
)

(

'

n

u

HB

oleObject225.bin

image259.wmf
)

(

index

HF_gain

m

oleObject226.bin

image260.wmf
))

(

x

_gain(inde

.

2

)

(

HF_gain

i

HP

i

g

HBcorr

=

oleObject227.bin

image261.wmf
_gain(.)

HP

oleObject228.bin

image262.wmf
j

image25.wmf
L

oleObject229.bin

image263.wmf
)

_gain(

j

HP

oleObject230.bin

image264.wmf
j

oleObject231.bin

image265.wmf
)

_gain(

j

HP

oleObject232.bin

image266.wmf
)

(

1

n

u

HB

oleObject233.bin

image267.wmf
)

(

)

(

)

(

1

2

n

u

i

g

n

u

HB

HBcorr

HB

=

image26.wmf
3

=

f

d

oleObject234.bin

image268.wmf
1

)

1

(

80

,

,

80

-

+

=

i

i

n

L

oleObject235.bin

image269.wmf
)

(

m

fac

oleObject236.bin

image270.wmf
(

)

å

å

=

=

+

+

=

79

0

2

2

79

0

2

)

80

(

)

80

(

'

)

(

6

.

0

)

(

n

HB

n

HB

sf

i

n

u

i

n

u

i

g

i

fac

oleObject237.bin

image271.wmf
(

)

1

68

.

0

1

/

1

-

-

z

oleObject238.bin

image272.wmf
(

)

å

=

79

0

2

)

(

'

)

(

6

.

0

n

HB

sf

n

u

i

g

image27.wmf
1

=

d

oleObject239.bin

image273.wmf
1

)

1

(

80

,

,

80

-

+

=

i

i

n

L

oleObject240.bin

image274.wmf
)

(

i

fac

oleObject241.bin

image275.wmf
)

(

0

i

Til

oleObject242.bin

image276.wmf
)

(

)

(

'

'

2

n

u

n

u

HB

HB

=

oleObject243.bin

image277.wmf
(

)

(

)

(

)

(

)

)

(

.

)

(

,

(m)

V

-

1.6

.

Til0(i)

-

1

1,

min

max

)

(

'

'

2

fac

n

u

i

fac

n

u

HB

HB

=

image28.wmf
)

(

n

h

comp

oleObject244.bin

image278.wmf
(

)

z

A

HB

oleObject245.bin

image279.wmf
(

)

(

)

HB

HB

z

A

z

A

g

/

ˆ

=

oleObject246.bin

image280.wmf
(

)

z

A

ˆ

oleObject247.bin

image281.wmf
HB

g

oleObject248.bin

image282.wmf
(

)

z

A

ˆ

image29.wmf
16

2

N

oleObject249.bin

image283.wmf
(

)

z

A

HB

/

1

oleObject250.bin

oleObject8.bin

image30.wmf
)

(

n

h

comp

image31.wmf
)

(

n

h

comp

image32.wmf
)

(

~

k

S

image33.wmf
0

C

image34.wmf
1

C

image35.wmf
)

(

b

R

image36.wmf
b

image37.wmf
a

image38.wmf
L

E

image39.wmf
R

E

image40.wmf
L

R

image41.wmf
R

R

image42.wmf
R

image43.wmf
L

L

image44.wmf
R

L

image45.wmf
lc

oleObject9.bin

image46.wmf
]

1

[

-

w

oleObject10.bin

image47.wmf
]

1

[

-

w

&

oleObject11.bin

image48.wmf
]

1

[

~

-

w

oleObject12.bin

image49.wmf
]

1

[

~

-

w

oleObject13.bin

image50.wmf
(

)

(

)

ï

î

ï

í

ì

£

£

<

£

×

=

-

-

16

1

~

]

1

[

]

1

[

j

idx

idx

j

j

j

j

w

d

w

&

oleObject14.bin

image51.wmf
idx

oleObject15.bin

image52.wmf
freq

j

Th

>

-

]

1

[

w

&

oleObject16.bin

image53.wmf
1

1

1

]

1

[

-

=

å

-

=

-

idx

idx

j

j

w

d

&

oleObject17.bin

image54.wmf
d

oleObject18.bin

image55.wmf
freq

Th

oleObject19.bin

image56.wmf
lc

oleObject20.bin

image57.wmf
(

)

ï

î

ï

í

ì

÷

÷

ø

ö

ç

ç

è

æ

-

>

-

+

=

=

-

-

-

-

otherwise

lc

lc

lc

j

For

j

j

j

j

2

]

1

[

]

1

[

2

]

1

[

]

1

[

~

1

16

1

w

w

w

w

&

K

oleObject21.bin

image58.wmf
int

Th

oleObject22.bin

