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[bookmark: _Toc397881082]

[bookmark: _Toc394084321][bookmark: _Toc394330701]5.3.2.2.1	Folding and on-the-fly window decimation
The folding operations and window decimation (when applicable) are combined in the same process. To achieve perfect reconstruction ALDO windows the 48 and 25.6 kHz are irregularly decimated. The decimation consists in selecting a subset of coefficients from the initial window (48 or 25.6 kHz) at specific indices  to preserve perfect reconstruction; this decimation is combined with the folding process for efficiency.
The folding process is illustrated in figure 54. The MDCT folding is performed by dividing the 40 ms time support of the ALDO window in 4 sections delimited by dotted vertical lines.
[image: ]
[bookmark: _Ref394334861][bookmark: _Ref394322074][bookmark: Fig_folding_with_aldo_window]Figure 54: Folding with ALDO window.
For each frame of new input samples, a block [image: ] of length [image: ] is folded into a block [image: ], [image: ]. The ALDO window at 48 or 25.6 kHz is defined at a sampling frequency corresponding to two frames of length [image: ]at 48 or 25.6 kHz ([image: ]) .  The ratio between [image: ] and [image: ] is called the decimation factor.
The folded frame is given for [image: ] by:

	,	(884)

	,	(885)
where the ratio [image: ] is the decimation factor and [image: ] is an offset that depends on the decimation factor. The ALDO window used for decimation, decimation factor and offset are given in table 77.
[bookmark: _Ref394334738][bookmark: Table_aldo_window_used_for_decimation]Table 77: ALDO window used for decimation, decimation factor and offset parameters.
	MDCT core sampling frequency (kHz)
	ALDO window used for decimation (kHz)
	Decimation factor [image: ]
	Offset [image: ]

	8
	48 
	6
	2

	12.8
	25.6 
	2
	0

	16
	48
	3
	1

	25.6
	25.6 
	1
	0

	32
	48 
	3
	1

	48
	48
	1
	0



The 32 kHz sampling frequency is a special case, as the ratio between 48 and 32 kHz is not integer. For this 32 kHz case, in order to achieve perfect reconstruction, the ALDO window [image: ] decimated from 48 to 16 kHz is applied to samples with even indices, the samples with odd indices are weighted by a complementary window [image: ]. For the 32 kHz case, the folded frame is given for [image: ] by:

	,	(886)

	,	(887)

	,	(888)

	,	(889)

where  is the frame length at 16kHz, [image: ] is the length of MDCT core frame at 32kHz, [image: ] is the decimation factor and [image: ] is the offset.

The complementary window [image: ]of size is stored in ROM. To obtain the window [image: ], the ALDO window at 48 kHz is decimated by 3 (with an offset of 1), the resulting decimated window at 16 kHz is considered as if it was obtained from a 32 kHz window decimated by 2 (without any offset) so that half of the samples of the 32 kHz window is known; the other half is obtained doing a linear interpolation between known samples. The combination of the 16 kHz window obtained by decimation and [image: ]is such that perfect reconstruction is ensured for the overall 32 kHz window.



[bookmark: _Toc393628385][bookmark: _Toc393726322][bookmark: _Toc394084452][bookmark: _Toc394416129]5.3.4.2.5	HVQ
The HVQ mode is used only for SWB signals at 24.4 kb/s and 32 kb/s. At 24.4 kb/s it initially codes the first 224 MDCT coefficients (this corresponds to frequency range up to 5.6 kHz), while at 32 kb/s it initially codes the first 320 coefficients (this corresponds to frequency range up to 8 kHz). The major algorithmic steps at the encoder are: detect and code spectral peaks regions, code low-frequency spectral coefficients (the size of coded region depends on the remaining bits after peaks coding), code noise-floor gains for spectral coefficients outside the peaks regions, code high-frequency spectrum envelope to be used with the high-frequency noise-fill.
[…]
Variations in the number of peaks per-frame results in different number of VQs, which leads to large variation in complexity. To keep the complexity nearly constant, while achieving low quantization error, the following approach is used: the search for each [image: ]is performed in a structured CB, with dynamically selected offset and size of the search region. The starting point for the search is determined by initial classification of the input shape vector, while the length of the search region dependents on the number of received shape vectors.
The codewords in the CB used for quantization of the shape vectors are order based on their distance to two pre-demined classes, with centroids [image: ]and[image: ]. The CB is structured in a way that the codewords closest to [image: ]and most distanced to [image: ]are in one side of the CB, while codewords closest to [image: ] and most distanced to [image: ] are clustered in the other side of the CB. The distance between the input vectors [image: ]to each of the classes determines the starting point for the search. Since the codevectors in the codebook are sorted according to a distortion measure reflecting the distance between each codevectors and the centroids, the search procedure goes first over set of vectors that is likely to contain the best match.
The search space is dynamically adjusted to the number of input vectors. The maximum search space is used with 8 peaks or less at 24.4 kb/s, and 12 peaks or less at 32 kb/s. When larger numbers of peaks are to be quantized in the current frame, the search space is reduced to limit the peak complexity.


[bookmark: _Toc393281221][bookmark: _Toc393306217][bookmark: _Toc393628389][bookmark: _Toc393726326][bookmark: _Toc394084461][bookmark: _Toc394416138]5.3.4.2.7.2	PVQ split methodology
When the bits [image: ]assigned for the band [image: ]are above a pre-determined threshold, as described in subclause 5.3.4.2.7.2.1, an algorithm for band splitting is activated. First the input vector is split into uniform (or close to uniform) segments in a non-recursive way. Then angles[image: ], which represent the ratio between energies [image: ]and[image: ]of a left and a right level segment, are calculated recursively. At each iteration, the level segments consist of one or several of the pre-determined segments from the initial split of the input vector. The angles are calculated from the top level (full size of the band to be quantized), and continuing towards the levels of shorter sub-vectors, i.e. shorter level segments.
[…]
The angles are used to distribute bits recursively to the already determined segments. At each iteration, the number of bits [image: ] and [image: ] for a left and a right level segment are derived from the available number of bits for shape coding of these segments [image: ], lengths of the level segments [image: ]and [image: ], and the angle [image: ]:
[…]



[bookmark: _Toc394436597]5.5.5	Spectral envelope diffuser
A frame loss around speech onset sometimes causes too sharp peaks at LP spectrum, and sudden power increase in concealed signal. Spectral envelope diffuser mitigates the sudden power change and provides better recovery of concealed signal. The activation flag for spectral envelope diffuser is encoded with 1 bit and transmitted as a side information. This tool is active only at 9.6, 16.4, 24.4 kbps.




The activation is based on the function of merits depending on LSF improvement counter , quantized LSF parameter of the previous frame , the extrapolated LSF  obtained in the guided PLC for pitch lag at the previous frame, and a modified LSF parameter . The modified LSF parameter  is calculated as follows.

		(1304)

where  is the lowest number of j which satisfies the following equation.

		(1305)

		(1306)


where  is computed as follows.  is a threshold which equals to 1900 for 12.8 kHz internal sampling frequency, 2375 for 16 kHz internal sampling frequency.

After initialized with 0, the LSF improvement counter  is computed as follows:

		(1307)


In case the following 4 equations are satisfied, the activation flag is set to 1, otherwise set to 0.  equals to 90 for 12.8 kHz internal sampling frequency, 112.5 for 16 kHz internal sampling frequency.  equals to 800 for 12.8 kHz internal sampling frequency, 1000 for 16 kHz internal sampling frequency.

		(1308)

		(1309)

		(1310)

		(1311)

[…]



[bookmark: _Toc394417865]6.2.4.1.4	Pre-echo attenuation
A typical artefact in transform coding known as pre-echo is observed especially when the signal energy grows suddenly, like speech onsets or music percussions. The origin of pre-echoes is explained below. The quantization noise in the frequency domain is translated into the time domain by an inverse MDCT transform and an add/overlap operation. Thus the quantization noise is spread uniformly in the MDCT synthesis window. In case of an onset, the part of the input signal preceding the onset often has a very low energy compared to the energy of the onset part. Since the quantization noise level depends on the mean energy of the frame, it can be quite high in the whole synthesis window. In this case, the signal to noise ratio (SNR) is very low (often negative) in the low energy part. The quantization noise can be audible before the onset as an extra artificial signal called pre-echo. To prevent the pre-echo artefact, an attenuation scheme is necessary when there is a significant energy increase (attack or onset) in some part of the synthesis window, and the pre-echo reduction has to be performed in the low energy part of the synthesis window preceding the onset. In the following, this low energy part preceding an onset will be referenced as "pre-echo zone". On the other hand the signal energy after pre-echo reduction should not lower than the mean energy in the preceding frames. However, if the preceding frame have low frequency spectrum, knowing that the pre-echo has often white noise like spectrum, even if the energy of the pre-echo zone is reduced to the level of the previous frames the pre-echo is still audible in the higher frequencies.
To improve the pre-echo reduction, an adaptive spectral shaping filtering is applied in the pre-echo zone up to the detected attack or onset to eliminate undesirable higher frequency pre-echo noise. This adaptive spectral shaping filter is realized by a two-band filterbank: the decoded signal is decomposed into two sub-signals according to a frequency criterion to obtain two sub-bands and a pre-echo attenuation factor is calculated in the determined pre-echo zone for each sample in both sub-bands. The attenuation factors of the sub-bands that determinate the spectral response of the filter are computed in function of several parameters of the full-band and sub-band signals as detailed below. The pre-echo attenuation is made in the sub-bands by applying these attenuation factors in the pre-echo -zone. Finally the two attenuated sub-bands are combined to obtain the pre-echo attenuated decoded signal. The pre-echo attenuation is activated for received frames, when the previous frame was also received, and when the bitrate is not higher than 32 kbit/s.





A pre-echo in the current frame can be caused by a sharp onset in the current or the next frame, as the MDCT analysis window covers these two consecutive frames. An onset in the next frame can be detected by analysing the memory of inverse MDCT that will be used in the next frame in the overlap-add operation. A discrimination of pre-echo/non-pre-echo zones and the attenuation factor computation are based on two signals of the inverse MDCT transform: on the decoded output full-band signal ,   and on the first  un-windowed memory of inverse MDCT ,  that will be used in the next frame in the overlap-add operation to synthesize the output content for the next frame and the pre-echo reduction is done in pre-echo zones preceding the onsets.

Decomposition in two sub-bands

The decoded signal  is decomposed in a lower and an upper frequency band sub-signals. These signals are computed by applying an adaptive zero-delay FIR filter with transfer function  in low-band, with  = 0.25 in the current frame and 0 otherwise; the high-band is given by the complementary filter. The first, lower band sub-signal is obtained by a first filtering of the full-band signal by the low-pass filter

		(1896)
and the second, higher band sub-signal is obtained by subtracting the lower band sub-signal from the decoded signal:

		(1897)

For the memory part  only the higher-band component is computed as

		(1898)

Discrimination procedure of pre-echo/non-pre-echo zones	




The discrimination procedure between pre-echo zones and non-pre-echo zones is based on the concatenated signal formed from ,  and , . This signal is divided in sub-blocks and its temporal envelope is computed.






The current frame part of the concatenated signal, ,  is divided into  sub-blocks of  samples where  =8 (2.5 ms sub-blocks). The temporal envelope  of this signal is computed as successive sub-block energies.


	, 	(1899)
The memory part of the concatenated signal forms one sub-block, its energy is computed as

		(1900)
The energy of the first half and the first ¾ samples of each sub-blocks of the current frame are also memorized:


	, 	(1901)


	, 	(1902)
The temporal envelope of the higher band in the current frame is also computed:


	, 	(1903)


Then, ,  is then modified as follows:

		(1904)



In this paragraph, index  is used for samples, and index  is used for sub-blocks.
In the concatenated signal the sub-block with maximal energy, including the memory sub-block, is also searched:

		(1905)

The transition of the temporal envelope to a high-energy zone is detected in the sub-block with the index  given by:

		(1906)

Note that when =0 either no pre-echo attenuation is made or the pre-echo attenuation of the previous frame is finished on the first samples of the current frame.




The zero-crossing rate , is also computed for each sub-block. A zero-crossing is detected when the product of two consecutive samples is smaller or equal to 0. The parameter , is defined as the number of times when the following condition is verified:


	, 	(1907)
The zero crossings between two consecutive sub-blocks count for the next sub-block. The zero crossing rate of the memory part is also computed.


The maximum length without zero crossing , is also stored for each sub-block. A period without zero crossing that covers a sub-block border is taken into account for the previous sub-block.

The maximal energy  is compared to that of the preceding sub-blocks:


	, 	(1908)

The low energy sub-blocks preceding the sub-block in which a transition has been detected with > 16 are determined as pre-echo zone. However in the following cases the sub-block is considered as non-pre-echo zone:

if 
or


if  and 
or


if  and 
where, computed in the previous frame and memorised,

		(1909)

and = 10 for narrowband signals and 16 otherwise.

Even the previous sub-blocks are considered as non-pre-echo zone if their energy is higher than .









The pre-echo attenuation of low energy sub-block determined as pre-echo zone is made by multiplying the two sub-band signals, the lower band  and the higher band  by attenuation factors  and  respectively, where  and  are determined as a function of the temporal envelope of the concatenated signal ,.


For each sample of the pre-echo zone sub-blocks, these gains are set to 0.01 if > 32 and to 0.1 otherwise. For the other sub-blocks, the initial gains are set to 1, they form the non-pre-echo zone. Following this  is set as the index of the first non-echo sub-block (where the initial gain is equal to 1).

A false alarm detection is made at this point. If the last pre-echo attenuation gain in the previous frame is higher than 0.5 and in the current frame only one sub-block has attenuation gain of 0.1 and the other gains are 0, is set to 0.
The initial pre-echo attenuation gains depend also on the energy of the previous frame: a minimal attenuation value for each pre-echo zone sub-block and for both sub-bands are also fixed as a function of the temporal envelope of the reconstructed signal of the previous frame. This value is fixed in a way that the attenuated sub-block energy in the sub-band cannot be lower than the pre-echo attenuation gain compensated mean energy of the previous frame in that sub-band, to preserve background noise energy. In the lower band:

		(1910)


for   and where  was computed in the previous frame as:

		(1911)



However  is set to 1 if  or .
In a similar way the initial pre-echo attenuation gain for the higher band signal is computed as:

		(1912)

for   where

		(1913)

Note that the initial attenuation gain in both the lower band and the higher band are identical for each samples of a sub-block.






Before applying the pre-echo attenuation gains the position of the onset is refined. If the onset was detected in the current frame, each sub frames from index   to  are divided into  sub-sub-blocks where =4 if the sampling frequency is 8 kHz and =8 otherwise. If = 0 only the first sub-block is considered.
The energy of these sub-sub-blocks is computed:


	, 	(1914)
where

		(1915)
and

		(1916)



When the onset was detected in the future memory part , only the first samples are examined and  and


	, 	(1917)
The maximum of these values is searched:


	, 	(1918)

The values  are compared to adaptive thresholds. The first one is independent of the sub-sub-block index:

		(1919)
The second one is computed as:

		(1920)

where

		(1921)


If  and  this value is modified as:

		(1922)








Initially the starting position of the onset for both the lower and the higher band is the beginning of the sub-block . This position is delayed by samples by sub-sub-blocks as long as .  The pre-echo attenuation gain of these samples moved from the non-pre-echo zone to the pre-echo-zone is set equal to the gain of last sample of the original pre-echo zone  and  respectively in the 2 sub-bands. In the following these new samples in the pre-echo zone are considered as the part of the last pre-echo zone sub-block (index ), the length of this sub-block  can be longer than .
To avoid false pre-echo detection, the energies of the last 2 or 3 sub-blocks preceding the onset is verified for both the full-band and the high-band signals: the regression coefficient for these sub-blocks energies is computed by the least squares estimation technique and compared to thresholds. If at least one regression coefficient is lower to its threshold the pre-echo attenuation is inhibited. In fact it is checked whether the sub-blocks preceding the onset have stable or increasing energy, this is always true for pre-echos. For easy comparison to threshold the regression coefficients are normalised by the sub-band energies when the threshold is different to 0. If the threshold is 0, only the sign of the regression coefficient is checked, no normalisation is needed. 
When the onset is detected in the first or second sub-block this verification is not possible. 


When the onset is detected in the third sub-block only the high-band regression coefficient is computed and compared to the threshold . As only the sign is checked here no normalization is needed for the regression coefficient:




If  <  the pre-echo attenuation in the pre-echo zone is inhibited.





When the onset is detected in the fourth or later sub-block both the full-band regression coefficient  and the normalized high-band regression coefficient  are computed on the last 3 sub-blocks preceding the onset and they are compared to the thresholds  and  respectively. Let’s note the index of the sub-block where the onset is detected .
In the full-band only the sign is checked, no normalization of the regression coefficient is needed:


In the higher band the normalized regression coefficient is estimated as:



The comparison  is equivalent to :






If the  <  or  <  the pre-echo attenuation in the pre-echo zone is inhibited.














The pre-echo attenuation functions  and   are stair-like, the gain is constant within a sub-block. To avoid annoying noise due to this discontinuity, the final pre-echo attenuation gain for the lower band  is obtained by linear smoothing of the initial pre-echo attenuation gain  introducing intermediate levels between the gains of consecutive sub-blocks. For narrow band signals = 20, for other bandwidths = 4. This smoothing is done before the detected onset position and at the beginning of each sub-block. For the first sub-block the smoothing is done between the memorized last gain value of the previous frame and the gain of the first sub-block of the current frame. If the onset position is detected in the next frame no smoothing is done at the end of the frame, this will be done at the beginning of the next frame. For example at the beginning sub-block ,  and if the gains determined for the sub-blocks  and  are  and   respectively, for wide band signals (= 4) the gains are smoothed in the following way:
Before smoothing:
	index
	…
	

	

	

	

	

	

	

	

	…

	gain
	…
	

	

	

	

	

	

	

	

	…


After smoothing:

	index
	…
	

	

	

	

	

	

	

	

	…

	gain
	…
	

	

	

	

	

	

	

	

	…



In the higher band no smoothing is necessary, .
In both sub-band, the pre-echo is attenuated in the pre-echo-zone by applying these gains to the sub-signals:

		(1923)

		(1924)

The final pre-echo attenuated synthesized signal  is obtained by combining the two attenuated sub-signals:

		(1925)




6.8.3.2.7.1	6.6, 8.85, 12.65, 14.25, 15.85, 18.25, 19.85 or 23.05 kbit/s modes 


The signal ,  is scaled by sub-frame of 5 ms as follows:


	, 	(2074)

where =0,1,2,3 is the sub-frame index and

		(2075)
with

		(2076)


and = 0.01. The sub-frame gain  can be further written as:

		(2077)


which shows that this gain is used to have in  the same ratio of sub-frame vs frame energy than in the low-band signal .
The scaled extended excitation signal is then computed for  as follows:
		(2077a)
where  is given in Eqs. 2037 and 2041 and  is the extended excitation signal. 

6.8.3.2.7.2	23.85 kbit/s mode 
In the 23.85 kbit/s mode, a high-frequency (HF) gain is transmitted at a bit rate of 0.8 kbit/s (4 bits per 5 ms sub-frame). This information is transmitted only at 23.85 kbit/s and it used in EVS AMR-WB IO to improve quality by adjusting the excitation gain.
To be able to use the HF gain information, the excitation has to be converted to a signal domain similar to AMR-WB high-band coding. To do so the energy of the excitation is adjusted in each subframe as follows:


	, 	(2078)

where the sub-frame gain  is computed as:

		(2079)


The factor 5 in the the denominator is used to compensate the difference in bandwith between the signal  and the signal , noting that in AMR-WB the HF excitation is a white noise in the 0-8000 Hz band.

The 4-bit index in each sub-frame, , transmitted at 23.85 kbit/s is demultiplexed from the bitstream and decoded as follows:

		(2080)

where  is the codebook used for HG gain quantization in AMR-WB, as defined in table 175.
[bookmark: tab_highband_gain_codebook_amrwb]Table 175: AMR-WB gain codebook for high band
	

	

	

	


	0
	0.110595703125000
	8
	0.342102050781250

	1
	0.142608642578125
	9
	0.372497558593750

	2
	0.170806884765625
	10
	0.408660888671875

	3
	0.197723388671875
	11
	0.453002929687500

	4
	0.226593017578125
	12
	0.511779785156250

	5
	0.255676269531250
	13
	0.599822998046875f

	6
	0.284545898437500
	14
	0.741241455078125

	7
	0.313232421875000
	15
	0.998779296875000




Then, the signal  is scaled according to this decoded HF gain as follows:


	, 	(2081)

The energy of the excitation is further adjusted by sub-frame under the following conditions. A factor  is computed:

		(2082)


Here the term 0.6 corresponds to the average magnitude ratio between the frequency response of the de-emphasis filter  in the 5000-6400 Hz band. Therefore, the term represents the energy of the high-band excitation that would be obtained at 23.05 kbit/s.

Based on the tilt information of the low-band signal, the scaled extended excitation signal is then computed for  as follows:


If >1 or <0:

		(2083)
Otherwise:

		(2084)



6.8.3.3	LP filter for the high frequency band

Predict tThe high-band LP synthesis filter  is derived from using the weighted low-band LP synthesis filter as follows:

		(2085)



where   is the interpolated LP synthesis filter in each 5-ms sub-frame and =0.9 at 6.6 kbit/s and 0.6 at other modes (from 8.85 to 23.85 kbit/s).  has been computed analysing signal with the sampling rate of 12.8 kHz but it is now used for a 16 kHz signal.
6.8.3.4	High band synthesis

The scaled extended excitation signal in high-band  is filtered by  to obtain the decoded high-band signal, which is added to synthesized low band signal to produce the synthesized output signal.



*** End of changes ***
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