Page 4
Draft prETS 300 ???: Month YYYY

TSG SA4#108 meeting
Tdoc S4-200543
6-10 April 2019, e-meeting

Agenda item:
7
Source:
Qualcomm
Title:
Scene Description-based Solution for Overlays in ITT4RT
Document for
Discussion and Agreement
1 Introduction

ITT4RT is designed to support immersive multi-party VR video conferencing. ITT4RT use cases include composition of captured VR video, e.g. from a conference room, and other content, such as 2D video slides or the like.

The following sentence from the work item description hints to the overlay solution:
For MTSI, the work is expected to enable scenarios with two-way audio and one-way immersive video, e.g., a remote single user wearing an HMD participates to a conference will send audio and optionally 2D video (e.g., of a presentation, screen sharing and/or a capture of the user itself)
The MTSI group is investigating different solutions to support overlays. All documented solutions are based on SDP signaling of the overlay content’s position inside the VR scene. Unfortunately, this approach is very limited and inefficient. The complexity of the scene can become unmanageable very quickly, e.g. with many remote users sharing and composing their own content into the scene. The SDP is simply not designed to carry scene description information.
In this contribution, we propose a solution based on Scene Description to support composition and overlays.
2 Scene Description
2.1
Overview
A scene graph is a directed acyclic graph, usually just a plain tree-structure, that represents an object-based hierarchy of the geometry of a scene. The leaf nodes of the graph represent geometric primitives such as polygons. Each node in the graph holds pointers to its children. The child nodes can among others be a group of other nodes, a geometry element, a transformation matrix, etc.

Spatial transformations are attached to nodes of the graph and represented by a transformation matrix.

This structure of scene graphs has the advantage of reduced processing complexity, e.g. while traversing the graph for rendering. An example operation that is simplified by the graph representation is the culling operation, where branches of the graph are dropped from processing, if deemed that the parent node’s space is not visible or relevant (level of detail culling) to the rendering of the current view frustum.

2.2
glTF 2.0
glTF 2.0 is a new standard that was developed by Khronos to enable Physically Based Rendering. glTF 2.0 offers a compact and low-level representation of a scene graph. glTF 2.0 offers a flat hierarchy of the scene graph representation to simplify the processing. glTF 2.0 scene graphs are represented in JSON to ease the integration in web environments. The glTF 2.0 specification is designed to elimate redundancy in the representation and to offer efficient indexing of the different objects in the scene graph.

The structure of a glTF 2.0 scene graph document is arranged as follows:

[image: image1.emf]

.json

Node hierarchy, materials, lights, cameras

.bin

• Geometry: vertices and indices
• Animation: key-frames
• Skins: inverse-bind matrices

.glsl

Shaders

.png, .jpg, …

Textures

.json

Node hierarchy, materials, lights, cameras

.bin

•Geometry: vertices and indices

•Animation: key-frames

•Skins: inverse-bind matrices

.glsl

Shaders

.png, .jpg, …

Textures

The scene graph itself has the following structure:

[image: image2.emf]

scene

node

camera mesh light

accessor

bufferView

buffer

material

technique texture

samplerimageprogram

shader

1

2

1 11

1 *

*
*

*
1

1

*

*

*
animation

skin
*

1

scene

node

camera

mesh

light

accessor

bufferView

buffer

material

technique texture

sampler

imageprogram

shader

1

2

1

1

1

1

*

*

*

*

1

1

*

*

*

animation

skin

*

1

MPEG is working on extensions to glTF 2.0 to add support for real-time media, scene updates, and other features.

3

Scene Description-based Composition and Overlays

3.1
General
Scene Graphs make it very simple to compose scenes for an immersive presentation. The composition may be performed at an MRF or MCU. Alternatively, a designated party in the conference is responsible for creating the initial scene description and sharing it with all other parties in the call. This party may be the one that creates the main VR content, for instance, the party that is in the conference room with a VR capture.
Each party may contribute one or more nodes to the Scene Graph. Each nodes comes with its associated transformation (in form of a matrix, or individual translation and rotation operations), to place that node appropriately in the scene.

3.2
SDP Signaling
In this section, 2 different alternatives are offered for the signaling of the scene description for the ITT4RT session.
In the first alternative, a dedicated websocket channel may be used. By using WebSockets, the reliable transmission and exchange of the scene description and its updates is guaranteed. Each party of the conference call may offer to send and receive a scene description through the following session-level attribute given in ABNF syntax:
Session-Description = “a=scene-description:” SP mime-type [SP uri] [SP sent-nodes] CRLF
mime-type = “mime-type:” byte-string

sent-nodes = “nodes-owned=1*(byte-string “;”)
uri = “websocket-uri:”URI

The uri parameter shall be a WebSocket URI for a data channel over which the scene description will be shared and updated.

Alternatively, a WebRTC data channel based on SCTP/DTLS/UDP is used. This alternative leverages the data channel definition in 26.114 for MTSI sessions. An application media session is used with the protocol identifier UDP/DTLS/SCTP with the subprotocol being “sd” for scene description information.

An example is shown below:

 m=application 52718 UDP/DTLS/SCTP webrtc-datachannel
 a=sctp-port:5000
 a=fingerprint:SHA-1 4A:AD:B9:B1:3F:82:18:3B:54:02:12:DF:3E:5D:49:6B:19:E5:7C:AB

 a=tls-id: abc3de65cddef001be82

 a=dcmap:0 subprotocol="sd"
 a=setup:passive

 a=connection:new

 a=mime-type:model/gltf+json
 a=nodes-owned: node12,node13,node14
3.3
Referencing Media Streams

The scene description references media streams from the conferencing session that are used as components of nodes in the scene. An example could be a video stream of a conference participant that is to be displayed in a rectangular region in the 3D scene. The following URI format shall be used for this purpose:
url=”rtp://” fqdn_or_ip “/” call_id “/” ssrc “/” mid

where fqdn_or_ip represent the domain name or ip address of the MRF or SIP proxy that manages the call. If none is used, it represents the domain name or ip address of the SIP address of the host of the call. call_id provides a unique identifier for the current call or conference. ssrc represents the synchronization source of the owner/sending participant of the media stream. Finally, mid represents media session identifier as provided in the SDP.
Other forms of addressing may be defined, e.g. as URNs.

1.
2.
3.
4.
3.5
Processing
Parties of an ITT4RT conference may establish direct peer-to-peer WebSocket channels with each other or a connection may be offered by an MRF to all parties. The WebSocket channel shall use the text frame format.

In a scene, node names shall be unique and shall be declared in the SDP to ensure there are no naming conflicts in nodes provided by different parties in a call. Nodes in the scene description may reference external media streams, such as other media streams that are declared in the SDP.

A receiver may mask nodes from certain parties in the rendering process, e.g. based on user input.
The MRF is by default the owner of the master scene graph, i.e. the one that sets the coordinate system and in which all other nodes are composited. It is also the one that defines the main camera in the scene.
In the absence of a centralized MRF, the parties in the call may select one party to provide the main scene description, for example by selecting the one that provides the VR content or the organizer of the call.
Overlays can be 2D or 3D objects that are placed within the scene. The geometry of the overlay and its texture are defined by the node that corresponds to that overlay object. A simple example is a set of slides that are played in a rectangular area that is shown inside the VR scene. In this case, the geometry will be a rectangle and the texture might be coming from a video media stream. The rectangle is placed in the scene. For viewport-dependent overlay, the position of the rectangle is locked to the camera direction.
4

Proposal

We propose to adopt the proposal in this contribution as a potential solution for overlays and to include the content of sections 2 and 3 into the permanent document of ITT4RT [1].

5

References

[1]
S4-200261, ITT4RT Permanent Document: Requirements, Working Assumptions and Potential Solutions

[2]

Khronos Group, The GL Transmission Format (glTF) 2.0, https://github.com/KhronosGroup/glTF/tree/master/specification/2.0
[3]

IETF RFC 8124, The Session Description Protocol (SDP) WebSocket Connection URI Attribute
[image: image4.png][image: image5.png]
- 12/13 -

