3GPP TSG SA WG4#87e						SA-200533
Electronic Meeting, April 02-09,2020 Agenda Item: 5.3

[bookmark: OLE_LINK57][bookmark: OLE_LINK58]Title:		Common Media Client Data CTA-5004 (community review)
Source:	Consumer Technology Association’s WAVE project
[bookmark: OLE_LINK45][bookmark: OLE_LINK46]To:		3GPP SA4
Contact person:	Alexandra Blasgen <ABlasgen@cta.tech>
Abstract:
For the past six months, the Consumer Technology Association’s WAVE project has had a Work Group developing the “CTA-5004 Common Media Client Data” specification. This standard defines a simple means by which every media player can communicate data with each media object request and have it received and processed consistently by every CDN. This information can be useful in log analysis, QoS monitoring and delivery optimization. Session identification allows thousands of individual server log lines to be interpreted as a single user session, leading to a clearer picture of end-user quality of service. Bitrate, buffer and segment signaling allow CDNs to fine-tune and optimize their midgress traffic by intelligently reacting to the time constraints implicit in each request. Device and content IDs across a multi-CDN delivery surface allow performance problems to be cross-correlated with player software versions or specific devices. In combination, this transferred data should improve the quality-of-service offered by CDNs, which in turn will improve the quality-of-experience enjoyed by consumers.

The document embedded above is now open for community review (attached). A feedback from SA4 would be much appreciated. The intent is to get supported by all CDNs and all players.
SA4 members are asked to review the document for clarity, applicability and to file any issues at https://github.com/cta-wave/common-media-client-data/issues, clearly identifying who they are and what organization they represent. At this stage we are not looking for input on new parameters to include in this first version, but rather whether the existing parameters are clear, useful and practical. All feedback should be received by April 6th, 2020.
[bookmark: _GoBack]An early player implementation that is already compliant and which may serve as an interesting example of the specification in action. This can be visited at: https://reference.dashif.org/dash.js/nightly/samples/advanced/cmcd.html . The data will be added as query args and can be viewed in the browser network console.

image1.emf
CTA-5004-Common- Media-Client-Data-community-review-draft.pdf

CTA-5004-Common-Media-Client-Data-community-review-draft.pdf

This specification is now in community review. You may file issues at
https://github.com/cta-wave/common-media-client-data/issues

Common Media Client Data

CTA-5004 (community review)

Media player clients can convey information to Content Delivery Networks (CDN) with each
object request. This information can be useful in log analysis, QoS monitoring and delivery
optimization. Session identification allows thousands of individual server log lines to be
interpreted as a single user session, leading to a clearer picture of end-user quality of service.
Bitrate, buffer and segment signaling allow CDNs to fine-tune and optimize their midgress traffic
by intelligently reacting to the time constraints implicit in each request. Device and content IDs
across a multi-CDN delivery surface allow performance problems to be cross-correlated with
player software versions or specific devices. In combination, this transferred data should
improve the quality-of-service offered by CDNs which in turn will improve the
quality-of-experience enjoyed by consumers.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in
this document are to be interpreted as described in RFC2119 [1].

This document outlines a simple means by which every media player can communicate data
with each media object request and have it received and processed consistently by every CDN.
This client data can be sent by one of two means:

● As a custom header.
● As a query argument.

A request can carry a Common-Media-Client-Data header or a Common-Media-Client-Data
query arg, but it MUST NOT carry both.

Note: usage of a custom header from a web browser user-agent will trigger a preflight OPTIONS
request before each media object request. This will lead to an increased request rate against
the server.

Header field definition

The header has a reserved case-insensitive field name:

https://github.com/cta-wave/common-media-client-data/issues

Common-Media-Client-Data

Query Argument definition

The query argument is case-insensitive:

Common-Media-Client-Data

If the request already bears a query string, then an ampersand Unicode 0x26 character followed
by the encoded Common-Media-Client-Data field should be appended.

Data payload definition

The data payload is common to both means of transmission. It is a string, containing a series of
key/value pairs and constructed according to the following rules:

1. All information in the payload MUST be represented as <key>=<value> pairs.
2. The key and value MUST be separated by an equals sign Unicode 0x3D.
3. Successive key/value pairs MUST be delimited by a comma Unicode 0x2C.
4. The key names described in this specification are reserved. Custom key names may be

used, but they MUST carry a hyphenated prefix to ensure that there will not be a
namespace collision with future revisions to this specification. Clients SHOULD use a
reverse-DNS syntax when defining their own prefix.

5. All key names are case-sensitive.
6. Any value of type String MUST be enclosed by opening and closing double quotes

Unicode 0x22. ​Double quotes and backslashes MUST be escaped using a backslash “\”
Unicode 0x5C character. Any value of type Token does not require quoting.

7. All keys are OPTIONAL.
8. Key-value pairs may be sequenced in any order.
9. If the data payload is transmitted as a query argument, then the entire payload string

MUST be URLEncoded per ​[1]. ​Data payloads transmitted via headers MUST NOT be
URLEncoded.

The reserved keys and their definitions are defined in Table 1 below:

Description Key
Name

Unit Value definition

Encoded
bitrate

br Integer kbps The encoded bitrate of the audio or video object being
requested. This may not be known precisely by the

player, however it MAY be estimated based upon
playlist/manifest declarations.

Buffer state bs Integer This key is used to indicate particular buffer states. If the
buffer state is nominal during normal play, this key
SHOULD not be sent.

1: startup/initializing (ends when initial buffer target is
reached)
2: seeking (if client can not distinguish between startup
and seeking then they SHOULD use 1:startup for seeking
as well)
3: buffer risk (if trending downward and buffer length is
less than 1 object/segment target duration)
4: buffer empty (if buffer is completely drained)

If the object type ‘ot’ key is sent along with this key, then
the ‘bs’ value refers to the buffer associated with the
particular object type. If no object type is communicated,
then the buffer state applies to the current session.

Content ID cid String A unique string identifying the current content. Maximum
length is 64 characters. This value is consistent across
multiple different sessions and devices and is defined and
updated at the discretion of the service provider.

Object
duration

d Integer
milliseconds

The playback duration in milliseconds of the object being
requested. If a partial segment is being requested, then
this value MUST indicate the playback duration of that
part and not that of its parent segment. This value can be
an approximation of the estimated duration if the explicit
value is not known.

Device ID did String A unique string identifying the current device. Maximum
length is 64 characters. This value is consistent across
multiple different session and content IDs. This identifier
may represent a combination of player software version
and device hardware and it is defined and updated at the
discretion of the service provider. This string must not
identify an instance of a device.

Deadline dl Integer
milliseconds

Deadline from the request time until the first sample of
this Segment/Object needs to be available in order to not
create a buffer underrun or any other playback problems.

For a playback rate of 1, this may be equivalent to the
player’s remaining buffer length.

Measured
throughput

mtp Integer kilobits
per second
(kbps)

The throughput existing between client and server, as
measured by the client. This value, however derived,
SHOULD be the value that the client is using to make its
next Adaptive Bitrate switching decision. If the client is
connected to multiple servers concurrently, it must take
care to report only the throughput measured against the
receiving server.

Next object
request

nor String Relative path of the next object to be requested. This can
be used to trigger pre-fetching by the CDN.This MUST be
a path relative to the current request. This string MUST
be URL encoded [2].

Next range
request

nrr String of the
form
“<range-start>-
<range-end>”

If the next request will be a partial object request, then
this string denotes the byte range to be requested. If the
‘nor’ field is not set, then the object is assumed to match
the object currently being requested. Formatting is similar
to the HTTP Range header, except that the unit MUST be
‘byte’, the ‘Range:’ prefix is NOT required and specifying
multiple ranges is NOT allowed. Valid combinations are:
“<range-start>-”
“<range-start>-<range-end>”
“-<suffix-length>”

Object type ot Token - one of
[m,
a,v,av,i,c,tt,k,o]

The media type of the current object being requested:
m = text file, such as a manifest or playlist
a = audio only
v = video only
av = muxed audio and video
i = init segment
c = caption or subtitle
tt = ISOBMFF timed text track
k = cryptographic key, license or certificate.
o = other

If the object type being requested is unknown, then this
key MUST NOT be used.

Playback
rate

pr Decimal 1 if real-time, 2 if double speed, 0 if not playing. SHOULD
only be sent if not equal to 1.

Requested
maximum
throughput

rtp Integer kilobits
per second
(kbps)

The requested maximum throughput that the client
considers sufficient for delivery of the asset. For example,
a client would indicate that the current segment, encoded
at 2Mbps, is to be delivered at no more than 10Mbps, by
using rtp=10000.

Note: This can benefit clients by preventing buffer
saturation through over-delivery and can also deliver a
community benefit through fair-share delivery. The
concept is that each client receives the throughput
necessary for great performance, but no more. The CDN
may not support the rtp feature.

Streaming
format

sf Token - one of
[d,h,s,o]

The streaming format which defines the current request
d = MPEG DASH
h = HTTP Live Streaming (HLS)
s = Smooth Streaming
o = other

If the streaming format being requested is unknown, then
this key MUST NOT be used.

Session ID sid String A GUID identifying the current playback session. A
playback session typically ties together segments
belonging to a single media asset. Maximum length is 64
characters. It is RECOMMENDED to conform to the
UUID specification [3].

Stream type st Token - one of
[v,l]

v = all segments are available e.g. VOD
l = segments become available over time e.g. LIVE

CMCD
version

v Integer The version of this specification used for interpreting the
defined key names and values. If this key is omitted, the
client and server MUST interpret the values as being
defined by version 1.

Table 1: Reserved Key and Value definitions

It is RECOMMENDED that a player supply sid on all media object requests in a session,
including playlists/manifests, init files, captioning files and DRM key requests. Other keys should

be applied where they have contextual meaning. For example, a ‘br’ (bitrate) key on a manifest
request is inappropriate and could be omitted.

Server processing requirements

1. A server, upon receiving Common-Media-Client-Data, MUST interpret the keys
according to their definition in this document.

2. Unknown keys, which the server does not understand, MUST be ignored.
3. Since there is no guarantee that keys are included, the server MUST be robust against

the absence of individual keys on any given request.
4. The server MUST be able to correctly process the key-value pairs irrespective of the

order in which they are defined.
5. If the sid key is present, the server SHOULD propagate that value to the server access

logs. The server access logs SHOULD conform to RFC6302 [4].
6. The server MAY assume that the payload is held as either a header or a query arg, but

never both at the same time.
7. The server, upon receiving the requested throughput (rtp) attribute, is not required to

throttle the response at the requested value. It is merely a request from the client and the
server may have other business requirements that dictate throttling at a different value,
or not throttling the response at all.

8. The server, upon receiving the nor “next object request” or nrr “next range request”
attributes, MAY optionally decide not to implement any pre-fetch action against that data.
The client SHOULD NOT depend upon any pre-fetch action being taken - it is merely a
request for optimization.

9. Servers SHOULD provide the necessary CORS responses to allow browser-based
clients to send custom headers, specifically:

a. Access-Control-Allow-Headers response header with a value that contains
“Common-Media-Client-Data”

b. Access-Control-Allow-Methods with a value that includes OPTIONS.
10. Servers SHOULD be aware that malicious clients may send false key data with the

objective of either attacking the server or gaining an unfair delivery advantage. The
server SHOULD validate incoming key data before any performance impacting
behaviors are executed.

Note: any caching proxy should be aware that the Common-Media-Client-Data payload will be
constantly changing and therefore has the potential to pollute cache keys. Implementers may
wish to exclude common-media-client-data query arguments from any cache key.

Security considerations

It cannot be assumed​ that all clients are benevolent, honest and accurate. However, the
specification does not expose any security issues ​that are not already exposed​ to an edge
server which answers all requests. A number of steps have been taken to mitigate security
concerns:

1. The ‘nor’ key value must be a relative path to the current request. This makes it harder to
inject false requests to arbitrary objects.

2. Only one object can be requested by the ‘nor’ key value - this lowers amplification
opportunity.

3. All requests to the server are optionally executed by the server, meaning that a server
can ignore them for security concerns (such as a rate-based threshold being exceeded)
and still be compliant with the specification.

Valid header examples

● Common-Media-Client-Data:
sid=”6e2fb550-c457-11e9-bb97-0800200c9a66”,d=4004,rtp=15000,mtp:25430,br
=3200,bs=1,ot=v

● Common-Media-Client-Data: sid=”6e2fb550-c457-11e9-bb97-0800200c9a66”
● Common-Media-Client-Data:

sid=”6e2fb550-c457-11e9-bb97-0800200c9a66”,rtp=15000
● Common-Media-Client-Data:

sid=”6e2fb550-c457-11e9-bb97-0800200c9a66”,rtp=15000,d=4004,ot=v,sf=d
● Common-Media-Client-Data: d=4004,br=3200
● Common-Media-Client-Data: d=4004,com.example-myKey=myValue
● Common-Media-Client-Data:

sid=”6e2fb550-c457-11e9-bb97-0800200c9a66”,d=2002
● Common-Media-Client-Data:

sid=”6e2fb550-c457-11e9-bb97-0800200c9a66”,nor=”..%2F300kbps%2Fsegmen
t35.m4v”

● Common-Media-Client-Data:
br=3200,bs=3,cid=”ABCD-1234”,d=4004,did=”Android6.0-player-build-12.3”,dl=1
8000,mtp=48175,nor=”..%2F300kbps%2Fsegment35.m4v”,nrr=12323-48763,ot=
v,pr=1.08,rtp=12000,sf=d,sid=”6e2fb550-c457-11e9-bb97-0800200c9a66”,st=v,v
=1

Corresponding valid Query Arg examples

● ?Common-Media-Client-Data=sid%3D%E2%80%9D6e2fb550-c457-11e9-bb97-0
800200c9a66%E2%80%9D%2Cd%3D4004%2Crtp%3D15000%2Cmtp%3A2543
0%2Cbr%3D3200%2Cbs%3D1%2Cot%3Dv

● ?Common-Media-Client-Data=sid%3D%E2%80%9D6e2fb550-c457-11e9-bb97-0
800200c9a66

● ?Common-Media-Client-Data=sid%3D%E2%80%9D6e2fb550-c457-11e9-bb97-0
800200c9a66%E2%80%9D%2Crtp%3D15000

● ?Common-Media-Client-Data=sid%3D%E2%80%9D6e2fb550-c457-11e9-bb97-0
800200c9a66%E2%80%9D%2Crtp%3D15000%2Cd%3D4004%2Cot%3Dv%2C
sf%3Dd

● ?Common-Media-Client-Data=d%3D4004%2Cbr%3D3200
● ?Common-Media-Client-Data=d%3D4004%2Ccom.example-myKey%3DmyValu

e
● ?Common-Media-Client-Data=sid%3D%E2%80%9D6e2fb550-c457-11e9-bb97-0

800200c9a66%E2%80%9D%2Cd%3D2002
● ?Common-Media-Client-Data=sid%3D%E2%80%9D6e2fb550-c457-11e9-bb97-0

800200c9a66%E2%80%9D%2Cnor%3D%E2%80%9D..%252F300kbps%252Fs
egment35.m4v%E2%80%9D

● ?Common-Media-Client-Data=br%3D3200%2Cbs%3D3%2Ccid%3D%E2%80%9
DABCD-1234%E2%80%9D%2Cd%3D4004%2Cdid%3D%E2%80%9DAndroid6.
0-player-build-12.3%E2%80%9D%2Cdl%3D18000%2Cmtp%3D48175%2Cnor%
3D%E2%80%9D..%252F300kbps%252Fsegment35.m4v%E2%80%9D%2Cnrr%
3D12323-48763%2Cot%3Dv%2Cpr%3D1.08%2Crtp%3D12000%2Csf%3Dd%2
Csid%3D%E2%80%9D6e2fb550-c457-11e9-bb97-0800200c9a66%E2%80%9D
%2Cst%3Dv%2Cv%3D1

External References

1. RFC2119 - ​https://tools.ietf.org/html/rfc2119
2. URL Encoding ​https://url.spec.whatwg.org/#application/x-www-form-urlencoded
3. UUID specification ​https://www.ietf.org/rfc/rfc4122.txt
4. RFC6302 ​https://tools.ietf.org/html/rfc6302

https://tools.ietf.org/html/rfc2119

https://url.spec.whatwg.org/#application/x-www-form-urlencoded

https://www.ietf.org/rfc/rfc4122.txt

https://tools.ietf.org/html/rfc6302

