	
3GPP TSG-SA4 Meeting #107 	S4-200318
Wroclaw, Poland, 20-24 January 2020	
	CR-Form-v12.0

	CHANGE REQUEST

	

	
	26.347
	CR
	<CR#>
	rev
	-
	Current version:
	16.1.0
	

	

	For HELP on using this form: comprehensive instructions can be found at 
http://www.3gpp.org/Change-Requests.

	



	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	X



	

	Title:	
	Support of HLS and hybrid HLS/DASH services

	
	

	Source to WG:
	ENENSYS

	Source to TSG:
	SA4

	
	

	Work item code:
	DAHOE
	
	Date:
	2019-01-07

	
	
	
	
	

	Category:
	B
	
	Release:
	16

	
	Use one of the following categories:
F  (correction)
A  (mirror corresponding to a change in an earlier release)
B  (addition of feature), 
C  (functional modification of feature)
D  (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	[bookmark: OLE_LINK1]Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
Rel-12	(Release 12)
Rel-13	(Release 13)
Rel-14	(Release 14)
Rel-15	(Release 15)
Rel-16	(Release 16)

	
	

	Reason for change:
	This contribution extends the MBPS API to allow the support of HLS services and hybrid DASH/HLS services


	
	

	Summary of change:
	The Streaming Service API is extended to support both HLS and DASH by adding to the description of a service a list of format that are available. Each format is identified by its MIME type and its Manifest URL.

	
	

	Consequences if not approved:
	HLS services and DASH/HLS services is not supported in 26.347

	
	

	Clauses affected:
	3.2, 4.3.3, 5, 6.3, 7.3, 7.7, B.3

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ... 

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ... 

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ... 

	
	

	Other comments:
	

	
	

	This CR's revision history:
	




FIRST CHANGE:
[bookmark: _Toc10395493]3.2	Abbreviations
For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].
API	Application Programming Interface
DANE	DASH-Aware Network Element
DASH	Dynamic Adaptive Streaming over HTTP
IDL	Interface Definition Language
JSON	JavaScript Object Notation
HLS	HTTP live Streaming
MAA	MBMS-Aware Application
MPD	Media Presentation Description
SAND	Server and Network Assisted DASH
SDP	Session Description Protocol
USD	User Service Description 
URL	Universal Resource Locator 

NEXT CHANGE:
4.3.3	DASH Media Application User Service
The DASH Media Streaming Service API defined in clause 6.3 provides the MAA with interfaces to manage the reception of a media streaming service:
· The media streaming service can be formatted as  DASH streaming content (as defined in TS 26.247 [7]) delivered over DASH-over-MBMS Streaming Services (as defined in TS 26.346 [5], clause 5.6) or. 
· The media streaming service can be formatted as HLS Content and delivered as a generic application service (as defined in TS 26.346 [5], clause 5.7).

Some of the interfaces defined allow an MAA to get information on the available DASH Media Streaming Services; to start and stop the reception of DASH media streaming content on these services; and to allow the MBMS Client to provide notifications associated with the receptions of DASH media streaming content. Clause 6.3 provides a complete description and the associated uses for the interfaces in the DASH Media Streaming Service API and also includes an abstract IDL definition for these interfaces.


NEXT CHANGE:
[bookmark: _Toc10395504][bookmark: _Hlk29907447]5	Reference Client Architecture
[bookmark: OLE_LINK40][bookmark: OLE_LINK41][bookmark: OLE_LINK24][bookmark: OLE_LINK25]Figure 5.1 shows a general service architecture including a reference client. On the network side, an MAA and content provider provides media formats to a BM-SC, typically through the xMB interface and initiates services and sessions through the xMB interface. The BMSC establishes MBMS User Services and the lower layers support the delivery of the data through regular 3GPP unicast as well as MBMS broadcast bearers. 
The MAA initiates the communication with the MBMS client using the MBMS-API. The MBMS client identifies the relevant services and provides the delivered user data to MAA. Typically, the media formats are provided through interfaces and to functions that conform to well-defined media delivery formats. The MAA controls the media client.
In TS 26.346 [5] the interface between the BMSC and the MBMS client for both unicast and broadcast related services and functions are defined. The interface between the MBMS client and the MAA is defined in the present document..
The focus of the present document is to define app-developer and web-friendly interfaces and programming structures to enable such an MAA to interact with the MBMS client.
An MAA that communicates with the MBMS client through APIs and possibly URL handlers as defined in the present document is referred to as MAA. The MBMS Client is a function that implements functionalities defined in TS 26.346 and provides APIs interfaces to expose relevant functionalities to an MAA.
 [image: ]
Figure 5.1: General Reference Architecture for Client
Figure 5.2 shows a specific instantiation for the DASHmedia  sStreaming Application User Service using the DASHMedia Streaming MBMS-API. In this case the content formats conform to TS 26.247. The DASH client may be viewed as part of the MAA, and as 3GPP defines interfaces into a DASH client in TS 26.247 [7] also interfaces to the DASH client function are in focus of the present document.


Figure 5.2: Client Reference Architecture for DASH-over-MBMS Streaming
[bookmark: OLE_LINK21]The control part of the MBMS-API are used for service discovery, registration, notifications, state changes and other control messages between the MAA and the MBMS client and for other control messages. The control part of the MBMS-APIs are defined in clause 6.
The data part interfaces are used to provide content delivered through MBMS User services to the MAA. However, the data is using formats and interfaces that are primarily MBMS independent such that for the MAA the delivery over MBMS is obscured. MBMS Client to application interfaces for data is primarily introduced in clause 7. 

NEXT CHANGE:
[bookmark: _Toc10395675]6.3	DASHMedia Streaming Service API
[bookmark: _Toc10395676]6.3.1	Introduction
The DASHMedia Streaming Service API provides MBMS Aware Applications with interfaces to manage the reception of DASH Media Presentations delivered over DASH-over-over MBMS services that are built on the Download Delivery Method. This API is intended to support live DASHmedia streaming applications. 
The IDL for the DASHMedia Streaming Service API is defined in Annex B.3.
[bookmark: _Toc10395677]6.3.2	MBMS Client State Model for DASHMedia Streaming
[bookmark: _Toc10395678]6.3.2.1	Overview
Figure 6.3.2-1 provides an informative client state model in order to appropriately describe the messages on the DASHMedia streaming service API. Four different states are defined. State changes may happen based on: 
-	Calls from the MAA or the DASHMedia client
-	Information provided by the MBMS User Service (USD, schedule, FDT, file complete)
-	Changes in the reception conditions
[image: ]
[bookmark: FIGURE_SD_STATE_DIAGRAM]Figure 6.3.2-1: State Diagram
Table 6.3.2-1 defines states for the MBMS client. Detailed descriptions are provided in the following subclauses .
[bookmark: TABLE_SD_STATES]Table 6.3.2-1: States of MBMS Client
	States and Parameters
	Definition

	IDLE
	In this state the MBMS client does not have a registered MAA and it may not keep the service definition up to date.
For more details see clause 6.3.2.3.

	NON_AVAILABLE
	In this state the MBMS client is not available and an MAA cannot register with the MBMS client.

	REGISTERED
	In this state the MBMS client has registered the MAA, it may keep the service definition up to date, and it may be providing file capture services to the MAA(s). 
In this state the MBMS client sends callback notifications to the MAA.
For more details see clause 6.3.2.4.

	ACTIVE
	In this state the MBMS client provides all services to of the REGISTERED state and also provides the streaming service to the MAA. 
For more details see clause 6.3.2.5.

	STALLED
	In this state the MBMS client provides all services to of the REGISTERED state, but the streaming services is at least temporarily stalled. 
For more details see clause 6.3.2.6.



[bookmark: _Toc10395679]6.3.2.2	MBMS Client Internal parameters
The MBMS client maintains internal parameters as defined in Table 6.3.2.2-1. Note that the parameters are conceptual and internal and only serve for the purpose to describe message generation on the API calls. 
[bookmark: TABLE_SD_PARAMETERS]Table 6.3.2.2-1: Parameters of MBMS Client for DASHMedia Streaming Service
	Internal Parameters
	Definition

	_app[]
	The MBMS client maintains a parameter set per registered app

	
	_appId
	A unique ID provided by the application and assigned to the app.

	
	_serviceClass[]
	A list of service classes identifying the services the application has access to.

	
	_registrationValidityDuration
	A period of time following the application de-registration over which the MBMS client continues to capture files for the application, see clause.

	
	_service[]
	The MBMS client maintains a parameter list per service. In this context the list is assigned also to one app, but an implementation may share the internal parameter list assigned to a service across multiple apps.

	
	
	_serviceID
	The service ID for a Streaming Application service over which the MBMS client collects files for the application.

	
	
	_serviceClass
	The service class associated with the Streaming Application service assigned the Service ID.

	
	
	_serviceLanguage
	The language of the service


	
	
	_serviceName[]
  _name
  _lang
	The service name, possibly expressed in different languages.

	
	
	_serviceBroadcastAvailability
	The service broadcast availability for the client. Three different types are defined:
BROADCAST_AVAILABLE – UE is in broadcast coverage
BROADCAST_UNAVAILABLE – UE is outside of broadcast coverage
SERVICE_UNAVAILABLE – The service is unavailable for the UE

	
	
	ServiceFormat[]
	[bookmark: _Hlk29912216]A list of possible formats for the service

	
	
	
	_ServiceMimeType
	The MIME type which identifies the service format,

	
	
	
	Manifestfile
	The latest MPD Manifest file associated to the service for that particular MIME type

	
	
	
	IS[]
	The Initialization Segments for the Media Presentation – i.e. Initialisation segment in the case of DASH, CMAF Header for CMAF, Media initialisation Section in the case of HLS 

	
	
	
	_ManifestfilempdURI
	The URI which is provided to the application for initiating the DASH Media Presentation.

	
	
	_sessionSchedule[]
  _start
  _stop
	Documents the session schedule for this session. Only sessionSchedule records should be included for which the value of the _stop time is in the future. 



[bookmark: HEADING_SD_STATE_IDLE][bookmark: _Toc10395680]6.3.2.3	MBMS Client Operation in IDLE state
[bookmark: HEADING_SD_STATE_REGISTERED]In the IDLE state, the MBMS client may listen to the User Service Bundle Description and may collect information. However, no binding with the MAA is in place.
When the registerStreamingApp() as defined in subclause 6.3.3.2 is invoked, then:
1)	The MBMS client checks the input parameters for consistency and sets the internal variables:
a)	If the functions of the MBMS client is not accessible, the MBMS client throws a FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE result code in the registerStreamingResponse() as defined in subclause 6.3.3.3 and abort the following steps and may at least temporarily move in NOT_AVAILABLE state. 
b)	If appId is an empty string then the MBMS client throws a MISSING_PARAMETER result code in the registerStreamingResponse() as defined in subclause 6.3.3.3 and abort the following steps and stays in IDLE mode. If not, the MBMS client sets the internal variable _appId to the value of the parameter.
c)	The MBMS client adds each entry in the serviceClassList parameter to its _serviceClass[] record. Note that the serviceClassList parameter may contain an empty service class entry. If an empty service class is provided the MBMS client considers the MAA to be registered with a service class that is also empty and only allow the MAA to have access to DASHMedia Streaming Application Services that are not associated with a serviceClass (i.e., the USD for these services do not have a serviceClass defined). 

d)	On receiving a registerStreamingApp() following a deregisterStreamingApp(), the MBMS client updates the serviceClassList to its _serviceClass[] record in the same way described for the setStreamingServiceClassFilter() method.
e)	If callBack is defined, the MBMS client uses the interfaces in the callback parameter of the registerStreamingApp() interface to send notification of event occurrences to the MAA. 
2.	generates a response registerStreamingResponse() as defined in subclause 6.3.3.3 and changes to REGISTERED state as defined in clause 6.3.2.4:
a)	If the MBMS client functions cannot be activated for any reason, especially if the Streaming Delivery Application Service API did not find an MBMS client available on the UE on which the MAA is running, the FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE registration response code is sent. The MBMS client may provide a message.
b)	If the MAA did not provide a mandatory parameter the MBMS client functions cannot be activated, the MISSING_PARAMETER registration response code is sent. 
c)	If the MBMS client functions can be activated, then:
i)	the RegResponseCode is set to REGISTER_SUCCESS registration response code;
ii)	a message may be generated.
d)	Sends the response with the above parameters.
3.	If the MBMS client functions can be activated and the response is sent with a REGISTER_SUCCESS, then MBMS client is in REGISTERED state and uses the REGISTERED parameters to provide the list of matching streaming delivery services using the information in the User Service Description (USD). If the response is sent with a FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE, then MBMS client is in NOT_AVAILABLE state. If the response is sent with a MISSING_PARAMETER, then MBMS client is in IDLE state.
If the MBMS client receives the getVersion() API call as defined in clause 6.3.3.13, it shall return version 1.0.
[bookmark: _Toc10395681]6.3.2.4	MBMS Client Operation in REGISTERED state
[bookmark: HEADING_SD_STATE_ACTIVE]For each registered MAA and the assigned parameters according to Table 6.3.2.2-1, the MBMS client uses the information in the User Service Description as well as its internal state information for the MAA in _app[] in the service class list _serviceClass[] to collect and keep up-to-date all internal information for the services of interest for the app, i.e. those that are member of any service class for which the MAA has interest. 
For each MBMS user service for which the USD as defined in TS 26.346 [5] is available in the MBMS client for the service classes registered by the MAA in _serviceClass[] and which is identified as a DASH-over-MBMS service according to the definition in TS 26.346 [5], clause 5.6, or identified as a generic application service according to the definition in TS 26.346 [5], clause 5.7 for HLS,  one service record in the internal parameter _service[] is defined in the MBMS client and continuously updated whenever a new USD is available:
-	For each userServiceDescription.name element, a (name, lang) pair is generated and added to the _serviceName[] list with _name set to the value of the USD element, and if present, the _lang set to the value of the associated @lang attribute. If no @lang attribute is present, the _lang parameter is set to an empty string.
-	If the attribute userServiceDescription@serviceClass is present, the value of this attribute is assigned to _serviceClass. If not present, the _serviceClass is set to an empty string.
-	The value of the attribute userServiceDescription@serviceId is assigned to _serviceId.
-	If the attribute userServiceDescription@serviceLanguage is present, the value of this attribute is assigned to _serviceLanguage. If not present, the _serviceLanguage is set to an empty string.
-	If  there is a r9:mediaPresentationDescription element or or a r12:appService element (with an attribute mimeType whose value contains  "application/dash+xml" or “application/dash+xml profiles=' urn:mpeg:dash:profile:cmaf:2019'”), a instance of  service format is created:
-	ServiceMimeType  is equals to “application/dash+xml” and  

-	The Media Presentation Description MPD metadata fragment referenced by either the r9:mediaPresentationDescription element or the Application Service Description fragment referenced by an a r12:appService (with an attribute mimeType whose value contains  "application/dash+xml" or “application/dash+xml profiles=' urn:mpeg:dash:profile:cmaf:2019'”)  referencing an MPD  and conforming to TS 26.247 [7] is extracted by the MBMS client. The contained MPD is stored in the _ManifestMPD parameter and the Initialization Segments are stored in the _IS[]. The _ManifestmpdURI parameter is generated at which location the MPD will be made available.
-   If  there is a r12:appService element (with an attribute mimeType whose value contains  "application/vnd.apple.mpegurl "), a instance of  service format is created: 
- 	ServiceMimeType  is equals to “application/vnd.apple.mpegurl”, 
-  the Application Service Description fragment whose content is the Master Playlist referenced by the r12:appService (with an attribute mimeType whose value contains "application/vnd.apple.mpegurl ")  is extracted by the MBMS client . The contained Master Playlist is stored in the _Manifest parameter and the Initialization Segments are stored in the _IS[]. The _ManifestURI parameter is generated at which location the Master Playlist will be made available.

-	The _serviceBroadcastAvailability is continuously updated set it to 
-	BROADCAST_AVAILABLE, if broadcast is available (if the UE is in broadcast coverage of the service), 
-	BROADCAST_UNAVAILABLE, if broadcast is not available (if the UE is NOT in broadcast coverage of the service).
-	If the userServiceDescription.schedule element is present then the MBMS client uses the information in the schedule description fragment to generate the internal _sessionSchedule[] list and keep up to date as a result of USD updates. The MBMS client shall only include _sessionSchedule[] records if the _stop value is in the future.
If updates are provided and added to the _service[] parameter, the MBMS client should send a streamingServiceListUpdate() callback as defined in clause 6.3.3.6.
When the getStreamingServices() method is received as defined in clause 6.3.3.4, the MBMS client sets the parameters as follows:
-	If the _service[] list is empty, the list is empty.
-	For each MBMS user service in the service[] list, one service record is generated as follows:
-	The value of the attribute _serviceId is assigned to serviceId.
-	The value of the attribute _serviceClass is assigned to serviceClass.
-	The value of _serviceLanguage is assigned to serviceLanguage. 
-	For each record in the _serviceName[] one serviceNameList entry is generated and:
-	the name is set to the value _name,
-	the name is set to the value _name, 
-	The value of _serviceBroadcastAvailability is assigned to serviceBroadcastAvailability. 
-	The list of MIME types available. For each element of this list, _manifestURI is assigned to manifestURITh.e _mpdURI is assigned to mpdURI.
-	If at least one _sessionSchedule[] record is present then:
-	The activeDownloadPeriodStartTime is set to the value of earliest _start time of any entry in the _sessionSchedule[].
-	The activeDownloadPeriodStopTime is set to the value of the _stop time of the entry selected earliest start time.
-	If no _sessionSchedule[] record is present:
-	The activeDownloadPeriodStartTime is set to 0.
-	The activeDownloadPeriodStopTime is set to 0.
When the setStreamingServiceClassFilter() as defined in clause 6.3.3.5 is received, the MBMS client runs the following steps:
-	It replaces the internal variable _serviceClass[] with the parameter values provided in serviceClassList.
-	The MBMS client dis-associates the service classes previously associated with the MAA that are not included on this list.
-	The MBMS client associates the service classes not previously associated with the MAA that are newly included on this list.
-	The MBMS client issues a streamingServiceListUpdate() notification as defined in clause 6.3.3.6 to the MAA to notify of this effect. 
When the startStreamingService() method as defined in clause 6.3.3.7 is received with a parameter serviceID, the MBMS client runs the following steps:
-	The MBMS client checks for errors and if necessary, the streamingServiceError() notification as defined in clause 6.3.3.12 is initiated. Specifically, if the MBMS client does not find a matching serviceId in its internal _service[] record, it responds with error code STREAMING_INVALID_SERVICE. Otherwise it may use the error code STREAMING_UNKNOWN_ERROR. An error message may be provided in the errorMsg string.
-	If the service with the serviceId parameter can be started:
-	The MBMS client uses the MPD Manifest file in the _MPD ManifestURI parameter and the remaining associated metadata to offer a valid media presentation to the DASHMedia client by providing a DASHMedia server in the MBMS client. For different options to provide such a service, refer to clause 7. 
-	The URL to the MPD Manifest file that is exposed to the MAA for DASHmedia consumption is stored in the internal variable _manifestmpdURI. The MPD Manifest file stored at this URI may be continuously updated, based on dynamic information received in the service announcement or inband MPD Manifest file updates.
-	The MBMS client sends a serviceStarted() notification as defined in clause 6.3.3.8 with the serviceId being passed along with the notification.
-	The MBMS client moves to ACTIVE state as defined in clause 6.3.2.5.
Whenever there has been a change to the parameters reported to the MAA in response to a getStreamingServices() API, i.e. in the internal service class list _serviceClass[] to add a new service record to the list or a change in one of the following internal parameters in the service record in the _serviceLanguage, _serviceName[]_serviceBroadcastAvailability, or updates to the _manifestmpdURI, the MBMS client notifies the MAA with streamingServiceListUpdate() as defined in clause 6.3.3.6.
When the deregisterStreamingApp() is received, all internal parameters for the MAA are cleared and the client moves to IDLE state.
[bookmark: _Toc10395682]6.3.2.5	MBMS Client Operation in ACTIVE state
[bookmark: HEADING_SD_STATE_STALLED]In the ACTIVE state, the MBMS client carries out all actions as in the REGISTERED state.
The MBMS client continuously downloads the DASHmedia resources and makes them available as announced in the MPDManifest file. For different options to provide such a service to the MAA and DASHmedia client, refer to clause 7. The URL to the MPD Manifest file that is exposed to the MAA for DASHmedia consumption is stored in the internal variable _manifestmpdURI. The MPD Manifest file stored at this URI may be continuously updated, based on dynamic information received in the service announcement or inband MPD Manifest file updates.
When the MBMS client receives a stopStreamingService() request as defined in clause 6.3.3.9 that matches an active service. 
-	The MBMS client checks for errors and if necessary, the streamingServiceError() notification as defined in clause 6.3.3.12 is initiated. Specifically, if the MBMS client does not find a matching serviceId in its internal _service[] record, it responds with error code STREAMING_INVALID_SERVICE. Otherwise it may use the error code STREAMING_UNKNOWN_ERROR. An errorMsg may be provided in the errorMsg string.
-	the MBMS client stops providing the DASHmedia resources at its DASHMedia server, i.e. at the location announced in the MPD Manifest file referenced by the _manifestmpdURI.
-	The MBMS client moves to REGISTERED state as defined in clause 6.3.2.4.
When the MBMS client receives a stopStreamingService() request as defined in clause 6.3.3.9 that matches an active service, the MBMS client terminates the download of the resources of this download delivery session and no longer makes it available at the indicated resources in the MPDManifest file. The MBMS client transitions to REGISTERED state
When the MBMS the internal parameter _serviceBroadcastAvailability transitions to BROADCAST_UNAVAILABLE, and no alternative delivery method is defined, or if the service is no longer available for other reasons (e.g. frequency conflict), then the service is stalled. In this case the MBMS client:
-	No longer makes available the resources in the announced locations by the _manifestmpdURI and the references therein.
-	Sends a serviceStalled() notification as defined in clause 6.3.3.11, along with one of the following reasons:
-	RADIO_CONFLICT – indicates a frequency conflict, namely the service requested to be started via a startStreamingService() cannot be started at this time since the MBMS client is actively receiving another service on a different frequency band.
-	END_OF_SESSION – indicates that playback has reached the end of the scheduled transmission for the service as described by the schedule description fragment for the service. This should indicate that the advertised activeServicePeriodEndTime time has been reached.
-	OUT_OF_COVERAGE – indicates a UE mobility event to an area where the service with streamingSubtype set to STREAMING_BC_ONLY is not available via broadcast.
-	STALLED_UNKNOWN_REASON – indicates that another unspecified condition caused the service interruption.
-	Transitions to the STALLED state as defined in clause 6.3.2.6.
[bookmark: _Toc10395683]6.3.2.6	MBMS Client Operation in STALLED state
In the STALLED state, the MBMS client carries out all actions as in the REGISTERED state.
In this state the MBMS client continuously monitors if the service can be made available again. 
Once the service gets available again, the MBMS client:
-	The MBMS client downloads the DASHmedia resources and makes them available as announced in the MPDManifest file. For different options to provide such a service, refer to clause 7. The URL to the MPD Manifest file that is exposed to the MAA for DASHmedia consumption is stored in the internal variable _manifestpdURI. The MPD Manifest file stored at this URI may be continuously updated, based on dynamic information received in the service announcement or inband MPD Manifest file updates
-	The MBMS client sends a serviceStarted() notification as defined in clause 6.3.3.8 with the serviceId being passed along with the notification.
-	The MBMS client moves to ACTIVE state as defined in clause 6.3.2.5.

[bookmark: _Toc10395684]6.3.3	Methods
[bookmark: _Toc10395685]6.3.3.1	Overview
Table 6.3.3.1-1 provides an overview over the methods defined for the Streaming Delivery Application Service API. Different types are differentiated, namely state changes triggered by the MAA, status query of the MAA to the client, parameter updates as well as notifications from the client. The direction of the main communication flow between MAA (A) and MBMS Client (C) is provided.
[bookmark: TABLE_SD_METHODS][bookmark: HEADING_SD_REGISTER_STREAMING_APP]Table 6.3.3.1-1: Methods defined for Streaming Delivery Application Service API
	Method
	Type
	Direction
	Brief Description
	Section

	registerStreamingApp
	State change
	A -> C
	MAA registers a callback listener with the MBMS client
	6.3.3.2

	deregisterStreamingApp
	State change
	A -> C
	MAA deregisters with the MBMS client
	6.3.3.10

	startStreamingService
	State change
	A -> C
	Starts streaming service 
	6.3.3.7

	stopStreamingService
	State change
	A -> C
	Stop streaming service 
	6.3.3.9

	getStreamingServices
	Status query
	C <-> A
	Get list of currently active services
	6.3.3.4

	getVersion
	Status query
	C <-> A
	Retrieves the list of files previously captured for the MAA
	6.3.3.13

	setStreamingServiceClassFilter
	Update to parameter list
	A -> C
	MAA sets a filter on file delivery services in which it is interested
	6.3.3.5

	registerStreamingResponse
	Update to parameter list
	C-> A
	The response to the MAA streaming service register API
	6.3.3.3

	serviceStarted
	Notification
	C -> A
	Notification to MAA when the streaming service started. 
	6.3.3.8

	streamingServiceListUpdate
	Notification
	C -> A
	Notification to MAA on an update of the available for DASHmedia streaming delivery services
	6.3.3.6

	streamingServiceError
	Notification
	C -> A
	Notification to MAA when there is an error with the download of service
	6.3.3.12

	serviceStalled
	Notification
	C -> A
	Notification to MAA that download DASHmedia segments failed
	6.3.3.11



[bookmark: _Toc10395686]6.3.3.2	Registration
[bookmark: _Toc10395687]6.3.3.2.1	Overview
This clause defines registerStreamingApp() interface.
An MAA calls the registerStreamingApp() interface to register with the MBMS Client to consume streaming services. The registerStreamingApp() interface has two purposes: 
1)	It signals to the MBMS Client that an MAA is interested to consume MBMS DASHMedia Streaming Services. 
2)	It allows the MAA to identify its callback listeners defined in the Streaming Service API for the MBMS Client to provide asynchronous notifications to the MAA on relevant events associated with streaming. 
NOTE:	Since some application development frameworks do not support callback functions, an MAA for these frameworks will not provide callback listeners in the registerStreamingApp() interface. Instead, the MAA will implement the necessary approach available on these frameworks to receive event notifications from the MBMS Client in place of callback functions. The notifications implemented on these frameworks will include the same information content as defined on the structures for the IDL callback functions.
Figure 6.3.3.2-1 shows the registration process[image: ]
[bookmark: FIGURE_SD_REGISTER_APP]Figure 6.3.3.2-1: Application Registration sequence diagram
[bookmark: _Toc10395688]6.3.3.2.2	Parameters
The parameters for the registerStreamingAppregisterStreamApping() API are:
-	string appId – provides a unique ID for the MAA registering with the MBMS client, which uses this identity to maintain state information for a particular MAA. The uniqueness of the ID is in the context of any MAA that may possibly register with MBMS client. Uniqueness is typically provided on platform level.
-	any platformSpecificAppContext – a platform-specific context for the registering MAA that enables the MBMS client to get extra information about the MAA that may be need to enable the MAA to have access to MBMS services, e.g., to enable MAA authentication or to enable the MAA to communicate with the MBMS client via platform (e.g., HLOS) services. 
-	sequence<string> serviceClassList – provides a comma-separated list of service classes which the MAA is interested to register. Each service class string can be any string or it may be empty.
-	ILTEStreamingFileDeliveryServiceCallback callBack – provides the MBMS client with the call back functions associated with DASHMedia Streaming Application Service APIs for the registering MAA. 
NOTE:	The callback element in the IDL description is optional and only included when the MAA development framework supports programmatic callback interfaces. If callbacks are not supported on a given MAA development framework, the same information content as defined on the callback structures is to be provided to the MAA via the notification method available with that development framework when the respective condition is met.
[bookmark: _Toc10395689]6.3.3.2.3	Pre-Conditions
The MAA has assigned a unique application ID appId in the context of its operation (e.g., a smartphone HLOS) with the MBMS client.
The MAA is pre-configured with the set of service classes that allows it to consume the DASHMedia Streaming Services associated with these service classes.
The MAA has access to a DASHMedia Streaming client.
The MAA may use this method at launch or after a deregisterStreamingApp() has been called.
The MBMS client is in IDLE state.
[bookmark: _Toc10395690]6.3.3.2.4	Usage of Method for MAA
The MAA uses the method registerStreamingApp() to register with the MBMS Client to consume Streaming Services.
The MAA provides its appId and, if applicable, some platform specific MAA context, platformSpecificAppContext.
The MAA provides the set of service classes which the MAA is interested to register.
[bookmark: _Toc10395691]6.3.3.2.5	Expected MBMS Client Actions
When this method is invoked, the MBMS client registers the app, if possible. For more details refer to clause 6.3.2.3. 
[bookmark: _Toc10395692]6.3.3.2.6	Post-Conditions
[bookmark: HEADING_SD_REGISTER_STREAMING_RESPONSE]The MAA expects the registerStreamingResponse() as defined in clause 6.3.3.3.
[bookmark: _Toc10395693]6.3.3.3	DASHMedia Streaming Application Service Registration Response
[bookmark: _Toc10395694]6.3.3.3.1	Overview
This clause defines registerStreamingResponse()call.
As illustrated in Figure 6.3.3.2-1, the MBMS client responds to an MAA call to the registerStreamingApp() API with a registerStreamingResponse() call back providing the result of the registration request.
[bookmark: _Toc10395695]6.3.3.3.2	Parameters
The parameters for the registerStreamingResponse() API are:
-	EmbmsCommonTypes::RegResponseCode value – provides a result code on the registration request. The allowed values are:
-	REGISTER_SUCCESS – indicates that the registration has been processed successfully and the MAA can proceed with other API interactions with the MBMS client for Streaming Delivery Application Services.
-	FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE – Indicates that the registration has failed since the Streaming Delivery Application Service API did not find an MBMS client available on the UE on which the MAA is running and no MBMS service will be available to the MAA.
-	MISSING_PARAMETER – indicates that the registration has failed since one or more of the required parameter was missing.
-	string message – provides an associated text description of the error message. The message may be empty.
[bookmark: _Toc10395696]6.3.3.3.3	Pre-Conditions
The MBMS client has received a call via the registerStreamingApp() API as defined in clause 6.3.3.2.
[bookmark: _Toc10395697]6.3.3.3.4	Expected MBMS Client Actions
The MBMS client responds accordingly and depending on the response moves to one of the states: IDLE, NOT_AVAILABLE, or REGISTERED. For more details refer to clause 6.3.2.4. 
[bookmark: _Toc10395698]6.3.3.3.5	Usage of Method for MAA
Once the MAA receives a the registerStreamingResponse() with the RegResponseCode set to REGISTER_SUCCESS, the MAA can proceed with other API interactions with the MBMS client. 
If the MBMS client is temporarily in NOT_AVAILABLE, if the registerStreamingResponse() signaled a failure with a FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE, the MAA may periodically recheck if the state of the MBMS client changes by retrying the registerStreamingApp()API. 
If the MBMS client is responding with MISSING_PARAMETERS, the MAA should fix the parameters and retry the registerStreamingApp() API.
[bookmark: _Toc10395699]6.3.3.3.6	Post-Conditions
If the MBMS client functions cannot be activated and once the response is sent, then MBMS client is at least temporarily in NOT_AVAILABLE state.
If the MBMS client functions can be activated and respective response is sent, then MBMS client is in REGISTERED state with the REGISTERED parameters as set above.
[bookmark: HEADING_SD_GET_STREAMING_SERVICES][bookmark: _Toc10395700]6.3.3.4	Getting information on available DASHMedia Streaming Application Services
[bookmark: _Toc10395701]6.3.3.4.1	Overview
This clause defines getStreamingServices() API call.
The registerStreamingApp() interface returns the complete list of available Streaming Services information. As illustrated in Figure 6.3.3.2-1, after a successful registration with the MBMS client, the MAA can use the getStreamingServices() API to discover the available Streaming Services associated with the service classes registered via the registerStreamingApp(). 
[bookmark: _Toc10395702]6.3.3.4.2	Parameters
The getStreamingServices() API does not have any input parameters.
The getStreamingServices() API returns a list describing the available DASHMedia Streaming Services, where each service is described by the following output only parameters:
-	sequence<ServiceNameLang> serviceNameList – optionally provides a list of the service title name in possibly different languages. Each (name, lang) pair defines a title for the service on the language indicated.
-	string name – offers a title for the user service on the language identified in the lang parameter.
-	string lang – identifies a natural language identifier per RFC 3066 [10].
-	string serviceClass – identifies the service class which is associated with the service.
-	string serviceId – provides the unique service ID for the service. The uniqueness is among all services provided by the BMSC. 
-	string serviceLanguage – indicates the available language for the service and represented as an identifier per RFC 3066 [10].

-	EmbmsCommonTypes::ServiceAvailabilityType serviceBroadcastAvailability – signals whether the UE is currently in the broadcast coverage area for the service. 
-	The possible values are:
-	BROADCAST_AVAILABLE – if content for the service is broadcast at the current device location.
-	BROADCAST_UNAVAILABLE – if content for the service is not broadcast at the current device location. 
-	SERVICE_UNAVAILABLE – if content for the service is at all available at the current device location.
-	string mimeType – provides the MIME type which defines the media transport format used (DASH, HLS).
-	string manifestmpdUri – provides an HTTP URL where the MPD Manifest file for the DASHMedia Streaming Application Service is hosted and available for DASHMedia Cclients access.
-	EmbmsCommonTypes::Date activeServicePeriodStartTime – signals the current/next active DASHMedia Streaming Application Service start time, when DASH media segments and other resources start being broadcast over the air. 
-	EmbmsCommonTypes::Date activeServicePeriodEndTime – signals the current/next active DASHMedia Streaming Application Service stop time, when DASH media segments and other resources stop being broadcast over the air. 

[bookmark: _Toc10395703]6.3.3.4.3	Pre-Conditions
The MBMS client is in REGISTERED state. 
[bookmark: _Toc10395704]6.3.3.4.4	Expected MBMS Client Actions
When this method is invoked, the MBMS client returns the streaming service parameters. For more details refer to clause 6.3.2.4.
[bookmark: _Toc10395705]6.3.3.4.5	U Usage of Method for MAA
The MAA should use this call right after the registerStreamingResponse() notification as defined in clause 6.3.3.3 is received or after the streamingServiceListUpdate() notification as defined in clause 6.3.3.6 is received.
The MAA should use the serviceId to identify the service in subsequent communication with the MBMS client to manage the streaming service.
The usage of the parameters serviceNameList, serviceClass, serviceBroadcastAvailability, and serviceLanguage is typically up to the MAA. 
The mimeType should be used by the MAA to select the media transport format used.
The manifestmpdURI should be used by the MAA to initiate playback by initiating a DASHMedia Cclient. The MAA should assume that Media Presentation can be consumed by the DASHMedia Cclient without any further interaction with the MAA.
 The parameters activeServicePeriodStartTime and activeBroadacstPeriodEndTime provides the MAA the ability to determine the current broadcast state for the service as follows:
-	If the current time is such that activeServicePeriodStartTime ≤ current time ≤ activeServicePeriodEndTime, DASHmedia content is being broadcast for the service at the current time.
-	If the activeServicePeriodStartTime is in the future, there is currently no broadcast being made for the service, but broadcast transmission is currently scheduled to start at this advertised time.
-	If the activeServicePeriodStartTime is set to zero, there is no currently defined broadcast schedule time for the service.

[bookmark: _Toc10395706]6.3.3.4.6	Post-Conditions
[bookmark: HEADING_SD_SET_STREAMING_SERVICE_CF]This call does not change the MBMS client state.
The MAA uses the serviceId to identify the service in subsequent communication with the MBMS client.
[bookmark: _Toc10395707]6.3.3.5	Updating the registered service classes
[bookmark: _Toc10395708]6.3.3.5.1	Overview
This clause defines setStreamingServiceClassFilter() call.
While an MAA is actively registered with the MBMS client to consume DASHMedia Streaming Services, the MAA can call the setStreamingServiceClassFilter() API to update the list of service classes the MAA wants to be registered with, see Figure 6.3.3.5.1-1.
[image: ]
[bookmark: FIGURE_SD_SET_STREAMING_SERVICE_CLASS_FI]Figure 6.3.3.5.1-1: Sequence diagram for updating the registered service classes for an MAA
[bookmark: _Toc10395709]6.3.3.5.2	Parameters
The parameters for the setStreamingServiceClassFilter() method are:
-	sequence<string> serviceClassList – see clause 6.3.3.2.2
[bookmark: _Toc10395710]6.3.3.5.3	Pre-Conditions
The MAA is actively registered with the MBMS client to consume DASHMedia Streaming Services, and MBMS client is in REGISTERED state for the MAA.
[bookmark: _Toc10395711]6.3.3.5.4	Expected MBMS Client Actions
When this method is invoked, the MBMS client updates the internal parameters and is expected to provide a streamingServiceListUpdate() notification as defined in clause 6.3.3.6. For more details refer to clause 6.3.2.4.
[bookmark: _Toc10395712]6.3.3.5.5	Usage of Method for MAA
The MAA may invoke the setStreamingServiceClassFilter() API to update the previously defined new list of service classes that includes additional service classes or includes fewer service classes than the list of service classes. 
The MAA should be aware that the updates are only active once an streamingServiceListUpdate() notification is received that confirms the new service class filters.
[bookmark: _Toc10395713]6.3.3.5.6	Post-Conditions
[bookmark: HEADING_SD_STREAMING_SERVICE_LIST_UPDATE]The MAA expects a streamingServiceListUpdate() notification as defined in clause 6.3.3.6.
[bookmark: _Toc10395714]6.3.3.6	Updating the Streaming Service List
[bookmark: _Toc10395715]6.3.3.6.1	Overview
This clause defines streamingServiceListUpdate() notification.
This notification is used by the MBMS client to inform the MAA about a successful API call setStreamingServiceClassFilter() as shown in Figure 6.3.3.5.1-1 or other updates in streaming service list. 
[bookmark: _Toc10395716]6.3.3.6.2	Parameters
None. 
[bookmark: _Toc10395717]6.3.3.6.3	Pre-Conditions
The MBMS client is in REGISTERED state for the MAA. The MAA has issued a setStreamingServiceClassFilter()API call.
[bookmark: _Toc10395718]6.3.3.6.4	Expected MBMS Client Actions
The MBMS client issues this notification as a response to a successful setStreamingServiceClassFilter()API call or to the response to updates of the service list provided in the MPDManifest file. For more details see clause 6.3.2.4. 
[bookmark: _Toc10395719]6.3.3.6.5	Usage of Method for MAA
The MAA is informed about the updates of the service class list and may issues a getStreamingServices() API call as defined in clause 6.3.3.4 to obtain the updated service list.
[bookmark: _Toc10395720]6.3.3.6.6	Post-Conditions
[bookmark: HEADING_SD_START_STREAMING_SERVICE]The MAA has the latest service list. No state change is involved.
[bookmark: _Toc10395721]6.3.3.7	Start DASHMedia Streaming Service
[bookmark: _Toc10395722]6.3.3.7.1	Overview
This clause defines startStreamingService() API.
After the DASHMedia Streaming Application Service registration, the MAA can make calls on the startStreamingService() API for the MBMS client to start reception of DASHmedia content received over unicast or broadcast as shown in Figure 6.3.3.7-1.
[image: ]
[bookmark: FIGURE_SD_START_STREAMING_SERVICE]Figure 6.3.3.7-1: MAA starts DASHMedia Sstreaming Sservices (DASH Example)
[bookmark: _Toc10395723]6.3.3.7.2	Parameters
The parameters for the startStreamingService() API are:
-	string serviceId – see definition in clause 6.3.3.2.2.
[bookmark: _Toc10395724]6.3.3.7.3	Pre-Conditions
The MBMS client is in REGISTERED state. 
The MAA has the latest service list, for example through the getStreamingServices() API call as defined in clause 6.3.3.4.
[bookmark: _Toc10395725]6.3.3.7.4	Usage of Method for MAA
The MAA can make calls on the startStreamingService() API for the MBMS client to start reception of DASHMedia content received over unicast or broadcast.
When MAA is no longer interested in consuming the Streaming Service, it should call the stopStreaming() API call as defined in clause 6.3.3.9.
[bookmark: _Toc10395726]6.3.3.7.5	MBMS Client Actions
When this method is invoked, the MBMS client starts the streaming service, if possible. For more details see clause 6.3.2.4.
[bookmark: _Toc10395727]6.3.3.7.6	Post-Conditions
[bookmark: HEADING_SD_SERVICE_STARTED]When this method is invoked, the MBMS client starts the streaming service, if possible. For more details see clause 6.3.2.4.
[bookmark: _Toc10395728]6.3.3.8	Notification that DASHMedia Streaming for a Service has started
[bookmark: _Toc10395729]6.3.3.8.1	Overview
This clause defines serviceStarted() callback function.
As illustrated in Figure 6.3.3.7-1, once the MBMS client has successfully collected all necessary information to start the service the MBMS client invokes the serviceStarted() callback function.
[bookmark: _Toc10395730]6.3.3.8.2	Parameters
The parameters for the serviceStarted() API are:
-	string serviceId – see definition in clause 6.3.3.2.2.
[bookmark: _Toc10395731]6.3.3.8.3	Pre-Conditions
The MAA issued a startStreamingService() API call.
The MBMS client is in REGISTERED state for the serviceId.
[bookmark: _Toc10395732]6.3.3.8.4	Expected MBMS Client Actions
The MBMS client issues this notification if the service is started successful. For details see clause 6.3.2.4. 
[bookmark: _Toc10395733]6.3.3.8.5	Usage of Method for MAA
Once the MAA receives the callback on the successful start of the service with the serviceId, the MAA may start the streaming service by initiating a DASH Media Presentation at a DASHMedia Cclient by handing over the manifestpdURI received during the registration process for this service.
[bookmark: _Toc10395734]6.3.3.8.6	Post-Conditions
The DASHMedia client can communicate with the MBMS client. The MBMS client makes available the DASH Media Streaming Application Service -over-MBMS service based on the MPD Manifest file referenced in by the manifestpdURI of the service.
[bookmark: HEADING_SD_STOP_STREAMING_SERVICE][bookmark: _Toc10395735]6.3.3.9	Stop DASHMedia Streaming Service
[bookmark: _Toc10395736]6.3.3.9.1	Overview
This clause defines stopStreamingService() API.
As Figure 6.3.3.7-1 illustrates, when an MAA that issued a startStreamingService() for a service is no longer interested in consuming the DASHMedia content for that service, it will call the stopStreamingService() API call.
[bookmark: _Toc10395737]6.3.3.9.2	Parameters
The parameter for the stopStreamingService() API is:
-	string serviceId – see definition in clause 6.3.3.2.2.
[bookmark: _Toc10395738]6.3.3.9.3	Pre-Conditions
The MBMS client is in ACTIVE state for this MAA.
[bookmark: _Toc10395739]6.3.3.9.4	Usage of Method for MAA
If an MAA is no longer interested in consuming the DASHMedia service, it should call the stopStreamingService() API call. Latest at the same time, the MAA should inform the DASHMedia client about the termination of the service and the DASHMedia client should no longer request resources that are provided directly or referenced by the manifestpdURI. 
[bookmark: _Toc10395740]6.3.3.9.5	MBMS Client Actions
The MBMS terminates the reception. For more details see clause 6.3.2.5.
[bookmark: _Toc10395741]6.3.3.9.6	Post-Conditions
The MBMS client is in REGISTERED state. The Media Presentation referenced by the manifestpdURI can no longer be accessed as the referenced Segments will no longer be provided at the announced location in the Manifest filePD..
[bookmark: HEADING_SD_DEREGISTER_STREAMING_APP][bookmark: _Toc10395742]6.3.3.10	DASHMedia Streaming Application Service De-registration
[bookmark: _Toc10395743]6.3.3.10.1	Overview
This clause defines deregisterStreamingApp() API call.
An MAA registers services classes with the MBMS client to request the start of streaming for DASHMedia Streaming Application Services. The MAA that registered with the MBMS client via the registerStreamingApp() API should invoke the deregisterStreamingApp() before exiting. The MBMS clients stops monitoring for Service Announcement updates when there are no MAAs registered. There are no parameters for the registerStreamingApp() API.
[bookmark: _Toc10395744]6.3.3.10.2	Parameters
None.
[bookmark: _Toc10395745]6.3.3.10.3	Pre-Conditions
The MBMS client is in REGISTERED state for this MAA.
[bookmark: _Toc10395746]6.3.3.10.4	Usage of Method for MAA
MAA registered with the MBMS client via the registerStreamingApp() API should invoke the deregisterStreamingApp() before exiting.
If the MAA deregisters, it will no longer receive notifications from the MBMS client and all context is cleared.
[bookmark: _Toc10395747]6.3.3.10.5	MBMS Client Actions
The MBMS client no longer sends notifications and clears all context for the MAA.
[bookmark: _Toc10395748]6.3.3.10.6	Post-Conditions
The MAA is no longer registered with the MBMS client.
The MBMS client is in IDLE mode..
[bookmark: HEADING_SD_SERVICE_STALLED][bookmark: _Toc10395749]6.3.3.11	Notification that DASHMedia Streaming for a Service has stalled
[bookmark: _Toc10395750]6.3.3.11.1	Overview
This clause defines the serviceStalled() notification.
The MBMS client enables consumption of a DASHMedia Streaming Application Service if the current setting for serviceBroadcastAvailability is BROADCAST_AVAILABLE or BROADCAST_UNAVAILABLE. However, due to UE mobility in and out of broadcast coverage for some DASHMedia Streaming Application Services, the serviceBroadcastAvailability for those services may change to SERVICE_UNAVAILABLE (i.e., the UE moves out of coverage for that service). Other circumstances may also prevent the broadcast reception of that service (e.g., a frequency conflict). In these circumstances, the MBMS client can signal the MAA that the service is temporarily not available for playback by invoking the serviceStalled() API. 
When broadcast reception of the service is re-established, the MBMS client will signal the MAA that the service is again available for playback by invoking the serviceStarted() API. This is illustrated in Figure 6.3.3.11.1.
[image: ]
[bookmark: FIGURE_SD_STREAMING_SERVICE_STALLED][bookmark: _GoBack]Figure 6.3.3.11.1: Signaling that a DASHMedia Sstreaming Sservice stalled (DASH Example)

[bookmark: _Toc10395751]6.3.3.11.2	Parameters
The parameter for the serviceStalled() API are:
-	string serviceId – identifies the DASHMedia Streaming Application Service for which broadcast receptions have temporarily stalled.
-	StalledReasonCode reason – provides specific information on what caused the service to stall. Valid options are:
-	RADIO_CONFLICT – indicates a frequency conflict, namely the service requested to be started via a startStreamingService() cannot be started at this time since the MBMS client is actively receiving another service on a different frequency band.
-	END_OF_SESSION – indicates that playback has reached the end of the scheduled transmission for the service as described by the schedule description fragment for the service. This should indicate that the advertised activeServicePeriodEndTime time has been reached.
-	OUT_OF_COVERAGE – indicates a UE mobility event to an area where the service with streamingSubtype set to STREAMING_BC_ONLY is not available via broadcast.
-	STALLED_UNKNOWN_REASON – indicates that another unspecified condition caused the service interruption.
[bookmark: _Toc10395752]6.3.3.11.3	Pre-Conditions
The MBMS client is in ACTIVE mode.
[bookmark: _Toc10395753]6.3.3.11.4	Expected MBMS Client Actions
The MBMS client provides a serviceStalled() notification in case it can no longer provide the referenced resources in the Media Presentation provided with manifestpdURI. For more details refer to clause 6.3.2.5.
[bookmark: _Toc10395754]6.3.3.11.5	Usage of Method for MAA
The MAA should stop the DASHMedia client playback on reception of the serviceStalled() notification. However, unless the MAA is no longer interested in the content, it should not issue a stopStreamingService() call in order to allow the MBMS client from trying to collect DASHMedia content once the download problem is resolved. The MAA should inform the user of the temporary service interruption.
If the DASHMedia client maintains in STALLED state for too long, the MAA should stop the service by issuing a stopStreamingService().
[bookmark: _Toc10395755]6.3.3.11.6	Post-Conditions
The MBMS client is in STALLED mode.
[bookmark: HEADING_SD_STREAMING_SERVICE_ERROR][bookmark: _Toc10395756]6.3.3.12	Notification of DASHMedia Streaming Application Service errors
[bookmark: _Toc10395757]6.3.3.12.1	Overview
This clause the streamingServiceError() notification.
As illustrated in Figure 6.3.3.12.1-1, the startStreamingService() request from an MAA may not be served, so the MBMS client will send a failure indication via the streamingServiceError() to signal the error code for the result of processing the MAA's startStreamingService(). 
[image: ]
[bookmark: FIGURE_SD_STREAMING_SERVICE_ERROR]Figure 6.3.3.12.1-1: Signaling errors with the startStreamingService() request from the DASHMedia Streaming Application
Figure 6.3.3.12.1-2 also illustrates that the streamingServiceError() is used to signal the error code for the result of processing the MAA's a stopStreamingService() request.
[image: ]
[bookmark: FIGURE_SD_STREAMING_SERVICE_ERROR_2]Figure 6.3.3.12.1-2: Signaling errors with the stopStreamingService() request from the DASHMedia Streaming Application
[bookmark: _Toc10395758]6.3.3.12.2	Parameters
The parameters for the streamingServiceError() API are:
-	string serviceId – identifies the DASHMedia Streaming Application Service on which the MBMS client failed.
-	StreamingErrorCode errorCode – identifies the error code for the reason causing the startStreamingService() or the stopStreamingService() request for the serviceId to fail. The available error codes are:
-	STREAMING_INVALID_SERVICE – signals that serviceID defined on the startStreamingService() or the stopStreamingService() request is not currently defined or it is not associated with the service classes with the MAA is registered.
-	STREAMING_UNKNOWN_ERROR – signals an error condition not explicitly identified.
-	string errorMsg – may provide additional textual description of the error condition.
[bookmark: _Toc10395759]6.3.3.12.3	Pre-Conditions
The MBMS client has received a the startStreamingService() or a stopStreamingService() request.
[bookmark: _Toc10395760]6.3.3.12.4	Expected MBMS Client Actions
The MBMS client will send a failure indication via the streamingServiceError() to signal the error code for the result of processing the MAA. For more details refer to clause 6.3.2.4 and 6.3.2.5.
[bookmark: _Toc10395761]6.3.3.12.5	Usage of Method for MAA
If the MAA receives this notification, it should revalidate the capture call. The MAA should also update the service list by issuing a getStreamingServices() as defined in clause 6.3.3.4.
[bookmark: _Toc10395762]6.3.3.12.6	Post-Conditions
No state change is applied.
[bookmark: HEADING_SD_GET_VERSION][bookmark: _Toc10395763]6.3.3.13	Checking the version for DASHMedia Streaming Application Service interface
[bookmark: _Toc10395764]6.3.3.13.1	Overview
This clause defines the getVersion() request function. 
[bookmark: _Toc10395765]6.3.3.13.2	Parameters
The parameters for the getVersion()API call are:
-	string version – identifies the version of the MBMS clients API implementation.
[bookmark: _Toc10395766]6.3.3.13.3	Pre-Conditions
The MBMS client may be in any state.
[bookmark: _Toc10395767]6.3.3.13.4	Usage of Method for MAA
In order for the MAA to know the version of the DASHMedia Streaming Delivery Application Service interface, the getVersion() API call may be used. If the version number is not supported by the MAA, it should deregister and not use the API.
[bookmark: _Toc10395768]6.3.3.13.5	MBMS Client Actions
The getVersion() API returns the version of the implemented APIs of the MBMS client. 
[bookmark: _Toc10395769]6.3.3.13.6	Post-Conditions
No state changes apply.


NEXT CHANGE:
[bookmark: _Toc10395868]7.3	HTTP Interface
The MBMS client may provide an HTTP server such that the MAA can access the files delivered over the MBMS User services by using regular HTTP Methods. The MBMS client may act as an HTTP cache for the resources delivered through the MBMS system.
The MBMS client offering delivered files and DASHMedia Segments through HTTP Interface should comply with a server as specified in RFC 2616 [15]. MBMS Clients providing resources through an HTTP interface should implement relevant HTTP server functionalities to support HTTP GET methods as required by the APIs.
MAAs communicating with the MBMS client over HTTP should comply with a client as specified in RFC 2616 [15]. MAAs should use the HTTP GET method or the HTTP partial GET method, as specified in RFC 2616 [15] to access files offered at HTTP-URLs.
MAAs communicating with the MBMS client over HTTP should support partial-file-accept requests and partial file responses as defined in TS 26.346 [5], clause 7.9.2.1.
Without excluding other response options, as a response to a partial-file-accept request using a regular HTTP GET request an MAA may typically receive one of the following responses:
1)	200 OK with Content-Type set to the Media Type of the requested object
2)	200 OK with the Content-Type set to application/3gpp-partial and the message format according to the definition in clause 7.9.2.2 of TS 26.346 [5].
3)	416 Requested Range Not Satisfiable with the additional information according to the definition in clause 7.9.2.2 of TS 26.346 [5].
4)	404 Not Found.
Case 1 is the regular response.
Guidelines for handling request responses according to case 4 from above are provided in clause A.7 of TS 26.247 [6].
Guidelines for handling request responses 2 and 3 from above are provided in clause A.9 of TS 26.247 [6].

NEXT CHANGE:


[bookmark: _Toc10395871]7.7	HLS Specific interface 
If the MBMS client supports the HLS Server functionalities, the MBMS client shall support sufficient functionalities to provide a valid HLS Media Presentation.
For this purpose, the MBMS client may rewrite the Master Playlist and the Media Playlist to provide a valid service based on the data received. An Example of operations that the MBMS client may implement is to ensure that the URLs of the HLS Resources in the Media Playlist or in the Master Playlist resolve to the location at which the MBMS client provides the resources delivered through the MBMS User Service. If the MBMS client has not received for any reason the resources, the MBMS Client may act as proxy to provide the resources or may perform an HTTP redirection (see Unicast Fall back in TS.26.346 Annex M [5]).


NEXT CHANGE:


[bookmark: _Toc10395897]B.3	IDL for DASHMedia Streaming Service API
#include "EmbmsCommonTypes.idl"

module StreamingService
{

    //Forward Declaration
    interface  ILTEStreamingServiceCallback;


    /**
    * @name StreamingErrorCode
    * @brief List of the errors for streaming service
    */
    enum StreamingErrorCode
    {
        STREAMING_INVALID_SERVICE,        /**< Invalid service ID                    */
        STREAMING_UNKNOWN_ERROR           /**< Unknown error                         */
    };

    /**
    * @name StalledReasonCode
    * @brief List of the reasons for streaming service stalled notification
    */
    enum StalledReasonCode
    {
        RADIO_CONFLICT,         /**< Radio frequency conflict               */
        END_OF_SESSION,         /**< End of session schedule                */
        OUT_OF_COVERAGE,        /**< Out of EMBMS coverage                  */
        OUT_OF_SERVICE,         /**< Out of service                         */
        BEARER_UNAVAILABLE,     /**< Bearer not available                   */
        STALLED_UNKNOWN_REASON  /**< Unknown reason                         */
    };

    /**
    * @name RegisterStreamingAppData
    * @brief Streaming app registration information
    */
    struct  RegisterStreamingAppData
    {
        string    appId;                         /**< The application ID used during the registration                     */
        any        platformSpecificAppContext;   /**< The platformSpecificAppContext provides 
                                              a platform-specific app context
                                              object to enable the API implementation to get extra information
                                              about the application.  */
        sequence<string> serviceClassList;    /**< List of service classes                  */
    };


    /**
    * @name StreamingServiceClassList
    * @brief ServiceClass information which the app is interested in. It is for setStreamingServiceClassFilter API.
    */
    typedef sequence<string>  StreamingServiceClassList;
    


    /**
    * @name ServiceNameLang
    * @brief Name and language information
    */
    struct ServiceNameLang
    {
        string name;        /**< Name                  */
        string lang;        /**< Language              */
    };

    /**
[bookmark: _Hlk29911868]    * @ ServiceMimeType mimetype of the manifest
    * @ ManifestfileURI manifest URI used by VIDEO player                n
    */
    struct ServiceFormat
    {
        string ServiceMimeType;        /**< mimetype of the manifest file */
        string ManifestfileURI;        /**< manifest file URI used by VIDEO player      */
    };




    /**
    * @name StreamingServiceInfo
    * @brief Streaming service information
    */
    struct StreamingServiceInfo
    {
        sequence<ServiceNameLang> serviceNameList;    /**< List of Service name and language          */
        string serviceClass;                          /**< Service class                              */
        string serviceId;                             /**< Service ID                                 */
        string serviceLanguage;                       /**< Service language                           */

        EmbmsCommonTypes::ServiceAvailabilityType serviceBroadcastAvailability;  /**< Service availability     */
        
sequence<ServiceFormat> ServiceFormatList;    /**< A list of possible format for the service          */
string mpdUri;                                /**< MPD URI used by DASH player                */
        EmbmsCommonTypes::Date activeServicePeriodStartTime;    /**< The current/next active file download service start time, when files
                                                                     start being broadcast over the air       */
        EmbmsCommonTypes::Date activeServicePeriodEndTime;      /**< The current/next active file download service end time, when files
                                                                      stop being broadcast over the air         */
        sequence<long> SAIList;                       /**< Servcie Area IDs based on current location of the device*/
    };


    /**
    * @name StreamingServices
    * @brief List of streaming service info objects
    */
    typedef sequence<StreamingServiceInfo> StreamingServices;


    /**
    * @name StartStreamingServiceData
    * @brief Start streaming service information. It is used by StartStreamingService API.
    */
    struct  StartStreamingServiceData
    {
        string serviceId;        /**< Streaming service Id from StreamingServiceInfo         */
    };

    /**
    * @name StopStreamingServiceData
    * @brief Stop streaming service information. 
    *        It is used by the StopStreamingService API.
    */
    struct  StopStreamingServiceData
    {
        string serviceId;    /**< Streaming service ID from StreamingServiceInfo         */
    };


    /**
    * @name ServiceStartedNotification
    * @brief Streaming service started information. It is used by the ServiceStartedNotification API.
    */
    struct ServiceStartedNotification
    {
        string serviceId;    /**< Streaming service Id from StreamingServiceInfo         */
    };

    /**
    * @name ServiceStoppedNotification
    * @brief Streaming service stopped information. It is used by the ServiceStoppedNotification API.
    */
    struct ServiceStoppedNotification
    {
        string serviceId;    /**< Streaming service Id from StreamingServiceInfo         */
    };

    /**
    * @name StreamingServiceErrorNotification
    * @brief Streaming service error information. It is used by the StreamingServiceErrorNotification API.
    */
    struct StreamingServiceErrorNotification
    {
        string serviceId;            /**< Streaming service Id from StreamingServiceInfo         */
        StreamingErrorCode errorCode;      /**< Streaming service error Id                             */
        string errorMsg;      /**< error message                                     */
    };


    /**
    * @name ServiceStalledNotification
    * @brief Streaming service stalled information. It is used by the ServiceStalledNotification API.
    */
    struct ServiceStalledNotification
    {
        string serviceId;            /**< Streaming service ID from StreamingServiceInfo     */
        StalledReasonCode reason;    /**< Streaming service stalled reason ID                */
    };


    /**
    * @name RegisterStreamingResponseNotification
    * @brief Streaming app registeration response information
    */
    struct RegisterStreamingResponseNotification
    {
        EmbmsCommonTypes::RegResponseCode value;  /**< Result of registeration value as defined in RegResponseCode     */
        string message;         /**< message described the result                                    */
    };

    interface ILTEStreamingService
    {

        /**
        @name getVersion
        @brief Retrieves the version of the current Streaming service interface implementation
        @return Interface version
        **/
        string getVersion();

        /**
        @name registerStreamingApp
        @brief Application registers a callback listener with the EMBMS client
        @param[in] regInfo information required for application registration.
        @param[in] cb callback listener
        @see RegisterStreamingAppData
        @see registerStreamingResponse()
        @return ResultCode
        **/
        EmbmsCommonTypes::ResultCode registerStreamingApp(in RegisterStreamingAppData regInfo, in ILTEStreamingServiceCallback callBack);


        /**
        @name deregisterStreamingApp
        @brief Application deregisters with the EMBMS client
        @pre Application calls register
        @return ResultCode
        **/
        EmbmsCommonTypes::ResultCode deregisterStreamingApp();


        /**
        @name startStreamingService
        @brief Start download of segments of streaming service over broadcast
        @param[in] StartStreamingService Parameters for starting the streaming services API
        @pre Application is registered for streaming service
        @see StartStreamingServiceData
        @see serviceStarted()
        @see streamingServiceError()
        @return ResultCode
        **/
        EmbmsCommonTypes::ResultCode startStreamingService(in StartStreamingServiceData serviceInfo);

        /**
        @name stopStreamingService
        @brief Stop download of segments of Streaming service over broadcast
        @param[in] StopDASHMedia Service Parameters for starting the streaming services API
        @pre Application is registered for DASHMedia service
        @see serviceStopped()
        @see StopStreamingServiceData
        @return ResultCode
        **/
        EmbmsCommonTypes::ResultCode stopStreamingService(in StopStreamingServiceData serviceInfo);

        /**
        @name setStreamingServiceClassFilter
        @brief Application sets a filter on streaming services in which it is interested
        @param[in] serviceClassInfo List of service class filters requested by the application
        @pre Application is registered successfully with streaming service
        @see serviceUpdate()
        @see getStreamingServices()
        @return ResultCode
        **/
        EmbmsCommonTypes::ResultCode setStreamingServiceClassFilter(in StreamingServiceClassList serviceClassList);

        /**
        @name getStreamingServices
        @brief Retrieves the list of streaming services defined in the USD.
        List of services is filtered by the service class filter,
        if a filter has been set by the application.
        @param[out]  StreamingServices List of filtered streaming services
        @pre Application is registered for streaming service and received streamingServiceListUpdate notification
        @see StreamingServices
        @see streamingServiceListUpdate()
        @return ResultCode
        **/
        EmbmsCommonTypes::ResultCode getStreamingServices(out StreamingServices services);
    };





    interface ILTEStreamingServiceCallback
    {

        /**
        @name registerStreamingResponse
        @brief The response to the application streaming service register API.
        @param  Notification Parameters for registering a streaming response
        @pre Application called registerStreamingApp
        @see RegisterStreamingResponseNotification
        @see registerStreamingApp()
        **/
        void registerStreamingResponse(in RegisterStreamingResponseNotification info);

        /**
        @name serviceStarted
        @brief Notification to application that streaming service is started and
        media player may be initialized for playback
        @param  Notification Parameters for service started notification.
        ServiceStartedNotification previously defined.
        @pre Application is registered for streaming service and called startStreamingService
        @see ServiceStartedNotification
        **/
        void serviceStarted(in ServiceStartedNotification notification);

        /**
        @name serviceStopped
        @brief Notification to application that streaming service is stopped and
        media player may be stopped for playback
        @param Notification Parameters for service started notification
        @pre Application is registered for streaming service and called stopStreamingService
        @see ServiceStoppedNotification
        **/
        void serviceStopped(in  ServiceStoppedNotification notification);

        /**
        @name streamingServiceError
        @brief Notification to application when there is an error with broadcast download of service
        @param Notification Parameters for service error notification
        @pre Application is registered for streaming service and called startStreamingService
        @see StreamingServiceErrorNotification
        **/
        void streamingServiceError(in  StreamingServiceErrorNotification notification);

        /**
        @name serviceStalled
        @brief Notification to application when there is a temporary disruption of
        the broadcast download of service
        @param Notification Parameters for streaming service stalled notification
        @pre Application is registered for streaming service and called startStreamingService
        @see ServiceStalledNotification
        **/
        void serviceStalled(in  ServiceStalledNotification notification);

        /**
        @name streamingServiceListUpdate
        @brief Notification to application on an update that is available for streaming services.
        Update may be due to the received USD or the network configuration.
        @pre Application is registered for streaming service.
        @post call getStreamingServices()
        **/
        void streamingServiceListUpdate();

    };
};

image1.emf
NetworkUE

MBMS 

Management 

System

Application 

and Content 

Provider

Media and 

Content Server

BMSC

eNode-B

xMB

TS26.116

Modem

MBMS Client

MBMS-Aware 

Application

Media Server

Unicast

MBMS Broadcast bearers

Media Client

TS26.346

MBMS API

Media/Content Format

Application Data


image2.emf
Network

UE

MBMS 

Management 

System

Application 

and Content 

Provider

DASH Server

BMSC

eNode-B

xMB

TS26.116

Modem

MBMS Client

MBMS-Aware 

Application

DASH Server

Unicast

MBMS Broadcast bearers

DASH Client

TS26.346

DASH 

Streaming 

MBMS API

TS 26.247

TS 26.247

Application Data


oleObject1.bin
Network


UE


MBMS Management System



image3.emf
IDLE

REGISTEREDACTIVE

STALLED

r

e

g

i

s

t

e

r

S

t

r

e

a

m

i

n

g

A

p

p

(

)

d

e

R

e

g

i

s

t

e

r

S

t

r

e

a

m

i

n

g

A

p

p

(

)

startStreamingService()

stopStreamingService()

s

e

r

v

i

c

e

S

t

a

l

l

e

d

(

)

s

e

r

v

i

c

e

S

t

a

r

t

e

d

(

)


image4.emf
MBMS Aware

Application

MBMS Client BM-SC

Periodic Service Discovery( based on configuration parameter )

registerStreamingApp()

deregisterStreamingApp()

getStreamingServices()

registerStreamingResponse()


image5.emf
MBMS Aware

Application

MBMS Client 

registerStreamingApp()

deregisterStreamingApp()

setStreamingServiceClassFilter()

registerStreamingResponse()

streamingServiceListUpdate()

getStreamingServices()


image6.emf
startStreamingService()

stopStreamingService()

MBMS Aware 

Application

MBMS Client

Iniitiate File Download, e.g. open FLUTE 

session (local multicast join) and receive 

segment file(s) and perform FEC decode

Multimedia

DASH Client

serviceStarted()

Start Playback ( MPD url)

Terminate File Download

Stop Playback

Get MPD/DASH Segments


image7.emf
startStreamingService()

MBMS Aware 

Application

MBMS Client

Multimedia

DASH Client

serviceStarted()

Start Playback ( MPD url)

Segments unavailable, e.g. 

out of broadcast coverage

Stop Playback

Get MPD/DASH Segments

serviceStalled()

Segments available, e.g.

Back inbroadcast coverage

Start Playback ( MPD url)

serviceStarted()


image8.emf
startStreamingService()

streamingServiceError()

MBMS Aware

Application

MBMS Client

startStreamingService() validation 

errors detected


image9.emf
stopStreamingCapture()

streamingServiceError()

MBMS Aware

Application

MBMS Client

stopStreamingCapture() validation 

errors detected


