3GPP TSG-SA4#107 meeting

Tdoc S4-200158
20 - 24 January 2020, Wroclaw, Poland

Source:

Dolby Laboratories

Title:

A Reference Audio Renderer for Qualification

Document for:

Discussion and Agreement
Agenda Item:

7.5

Preface and proposal
Previous discussion in SA4 regarding IVAS candidate codec testing during a qualification phase has highlighted the need for a reference audio renderer that can be shared between candidates, so that several candidate IVAS solutions can be evaluated for compliance with IVAS performance requirements [1] in a fair manner against a common reference system. The text beginning in Section 1 is a general description of a straightforward reference renderer that may serve as a baseline for evaluation of all candidates. Whenever possible, design decisions have been made in favour of simplicity as well as the use of widely accepted approaches. In addition, the supported input and output formats constitutes only those which are presently accepted (without brackets) in IVAS-4. Upon acceptance of the proposed reference renderer, the source offers to publicly share a reference MATLAB or C implementation of this renderer with 3GPP.
It is proposed that the text beginning with Section 1 below be adopted as the description of a reference renderer for use in IVAS qualification.
1 Introduction

The reference audio renderer described herein supports either channel-based or FoA input and can render to channel-based loudspeaker systems or headphones. Headphone rendering is binauralised.

The renderer consists of time-invariant mixing and convolution operations (for binauralisation) and therefore adds zero delay to the signal chain, except for the group delay inherent in the HRTF sets.
The renderer takes 16-bit signed PCM audio input from the IVAS decoder and outputs 16-bit signed PCM audio for playback. Supported sampling rates are 16, 32, and 48 kHz.
2 Loudspeaker Renderer

The loudspeaker renderer takes input in one of the following input formats: {5.1, 7.1, FoA} and outputs to one of the following loudspeaker layouts {Mono, Stereo, 5.1, 7.1}. Stereo, 5.1 and 7.1 layouts correspond to ITU-R BS2051-2 [2] Layouts A, B, and I, respectively.

Table 1 lists supported input / output format combinations:

Table 1: Loudspeaker Renderer supported input/output format combinations
	In
Out
	Mono
	Stereo
	5.1
	7.1

	Stereo
	X
	X
	
	

	5.1
	X
	X
	X
	

	7.1
	X
	X
	
	X

	FoA
	X
	X
	X
	X

Input and output channel order for each format is assumed to be as follows:

Table 2: Stereo channel order
	Channel Number
	Description

	0
	Left

	1
	Right

Table 3: 5.1 channel order
	Channel Number
	Description

	0
	Left

	1
	Right

	2
	Centre

	3
	LFE

	4
	Left Surround

	5
	Right Surround

Table 4: 7.1 channel order
	Channel Number
	Description

	0
	Left

	1
	Right

	2
	Centre

	3
	LFE

	4
	Left Side Surround

	5
	Right Side Surround

	6
	Left Rear Surround

	7
	Right Rear Surround

Table 5: FoA channel order
	Channel Number
	Description

	0
	W

	1
	Y

	2
	Z

	3
	X

The loudspeaker renderer consists of a passive mixer from input to output, as implemented in Pseudocode 1. Note that renderer latency can be reduced to zero by either reducing the block size to 1 sample or integrating the mixer function to an existing block-based audio signal chain.
Pseudocode 1
// // Render a single block of audio

// input: inSig (A block of PCM audio (nIn channels))

// renderMatrix (Matrix which mixes input channels into renderer output channels

// output: outSig (A block of renderer audio (nOut channels))

function audioOut = lsRender(inSig, renderMatrix)
{

 nIn = numberOfColumns(inSig)

 blockSize = 960 //default. May be changed.
 nOut = numberOfColumns(renderMatrix)

 for k = 0 to blockSize - 1

 {

 for chOut = 0 to nOut - 1

 {

 outSig[k, chOut] = 0

 for chIn = 0 to nIn - 1

 {

 out_sig[k, chOut] += inSig[k, chIn] * renderMatrix[chIn, chOut]

 }

 }

 }

}
The reference renderer makes use of a renderMatrix that is dependent on the renderer output mode. Example matrices for all non-trivial input/output format combinations are provided in Annex A. The source suggests using these matrices but would also be open to other proposals. In the case where the renderer output mode is the same as the input format, the render matrices consist of an identity matrix of the same size as the input (and the loudspeaker renderer function does not modify the audio). Unless otherwise specified, mono output matrices are obtained by summing L and R columns of the corresponding stereo output matrix and dividing by two, which is equivalent to cascading the relevant matrix for 2.0 renderer output mode with the 2.0 matrix for mono renderer output mode (Table 8).
3 Headphone Renderer

The headphone renderer takes input in one of the following input formats: {5.1, 7.1, FoA} and outputs binauralised L and R channels for playback on Stereo headphones. The assumed channel orders for the input formats (as well as the output format) are the same as for the Loudspeaker Renderer (Section 2).
3.1 Algorithm Description
The headphone renderer consists of a convolver and a set of HRTFs. The number of HRTFs is 5x2, 7x2, and 4x2 for 5.1, 7.1, and FoA, respectively. That is, there is one HRTF per input-output channel pair. There is no inherent limit to the HRTF length, and the renderer performs block-based FFT convolution with an arbitrary stride. When integrated to an existing block-based processing chain, the convolver incurs no additional latency, except for the group delays of the HRTFs.
The headphone renderer is implemented as per Pseudocode 2 below.
Pseudocode 2
// // Render a single block of audio

// input: inSig (A block of PCM audio (nIn channels))

// HRTFSet (A set of nIn x 2 HRTFs, for binauralisation)

// output: outSig (A block of renderer audio (2 channels))

function audioOut = HpRender(inSig, HRTFSet)
{

 nIn = numberOfColumns(inSig)

 blockSize = 960
 nOut = 2
 for chOut = 0 to nOut - 1

 outSig[:, chOut] = 0

 {

 for chIn = 0 to nIn - 1

 {

 out_sig[:, chOut] += convFFT(in_sig[:,chIn], HRTFSet[chIn, chOut], blockSize)
 }

 }

 }

}
It should be noted that the default blockSize of 960 samples may be changed to any suitable number. The convFFT function performs block-based fast convolution of a block of input audio with an HRTF. The HRTF may consist of multiple DFT blocks if the source HRIR is longer than blockSize.

3.2 Support for Custom HRTFs
HRIRs are read by the renderer at initialization time from files in the SOFA 1.0 format [3]. HRIRs are stored using the FIR DataType. An arbitrary HRIR length (N) is supported. The number of receivers (R) must be 2 and the number of measurements (M) must equal the number of input channels for the input audio format. HRIRs within a file are assumed to be stored sequentially according to the input channel order specified in Section 2, with all the HRIRs for the L output channel preceding the HRIRs for the R output channel. SOFA positional metadata is ignored.
There shall be one SOFA file per supported audio input format and sampling rate. All files must be stored in the same folder, using the following file name convention:

<DESCRIPTION>_<INPUT_FORMAT>_<FS>.sofa
DESCRIPTION is a short description intended for human operators and is ignored by the software. INPUT_FORMAT is one of “5.1”, “7.1” or “FoA”, and indicated the audio input format for which the HRIRs should be used. FS is the sampling rate in Hz.
During renderer initialisation, the IR data for each input-output channel pair is pre-delayed by the number of samples specified by its corresponding Delay data in the SOFA record. Resulting HRIRs are zero-padded if they are shorter than blockSize or segmented into multiple blocks if they are longer than blockSize. These blocks are then transformed to the DFT domain and stored in HRTFSet, in the same order as the HRIRs.
3.3 Default HRTF set

It is proposed that a common HRTF set be used for testing during the IVAS qualification phase. The source invites other proponents to propose or contribute a set of suitable HRTFs in the format specified in this contribution.
4 Other Aspects

4.1 Headroom management

The reference renderer does not perform dynamics processing or any kind of limiting. Whilst the floating-point renderer implementation allows for intermediary signals to take values beyond 0dbFS, the final 16-bit PCM outputs will be hard-clipped to 0dBFS. The renderer, however, can output a warning when such clipping occurs such that the test input material can be pre-scaled appropriately.

4.2 Low Frequency Effects (LFE)

When the output format is stereo loudspeakers or headphones, the LFE is mixed to L and R channels equally, with a gain of 5.5dB for each output channel. This approach is reflected in the 5.1 and 7.1 to Stereo mix matrices of Table 6 and Table 7. It is recommended to also use this approach for the LFE HRTFs. The source recommends this 5.5dB gain as a compromise between the 10dB gain that is prescribed for playback of 5.1 and 7.1 content through a subwoofer (the 10dB gain is typically applied by the subwoofer’s internal amplifier in the case of an active subwoofer, or by the home theatre receiver/amplifier in the case of a passive subwoofer) and the power handling capabilities that can be assumed of a 2.0 loudspeaker system or stereo headphones.
Annex A: Loudspeaker Renderer Matrices
Table 6: 7.1 Matrix for 2.0 Renderer Output Mode

	1
	0

	0
	1

	M_3DB
	M_3DB

	LFE_MIX
	LFE_MIX

	M_3DB
	0

	0
	M_3DB

	M_3DB
	0

	0
	M_3DB

Table 7: 5.1 Matrix for 2.0 Renderer Output Mode

	1
	0

	0
	1

	M_3DB
	M_3DB

	LFE_MIX
	LFE_MIX

	M_3DB
	0

	0
	M_3DB

Table 8: 2.0 Matrix for Mono Renderer Output Mode

	0.5

	0.5

Table 9: FOA Matrix for 7.1 Renderer Output Mode

	0.12997697
	0.12997697
	0.13167991
	0.00000000
	0.11650709
	0.11650709
	0.19705110
	0.19705110

	0.21275033
	-0.21275033
	0.00000000
	0.00000000
	0.26667311
	-0.26667311
	0.24144877
	-0.24144877

	0.00000000
	0.00000000
	0.00000000
	0.00000000
	0.00000000
	0.00000000
	0.00000000
	0.00000000

	0.20440134
	0.20440134
	0.29266265
	0.00000000
	-0.00000080
	-0.00000080
	-0.35491609
	-0.35491609

Table 10: FOA Matrix for 5.1 Renderer Output Mode

	0.15387896
	0.15387896
	0.13189929
	0.00000000
	0.28906084
	0.28906084

	0.26738692
	-0.26738692
	0.00000000
	0.00000000
	0.45237804
	-0.45237804

	0.00000000
	0.00000000
	0.00000000
	0.00000000
	0.00000000
	0.00000000

	0.22067761
	0.22067761
	0.29264590
	0.00000000
	-0.37223666
	-0.37223666

Table 11: FOA Matrix for 2.0 Renderer Output Mode

	1
	1

	1
	-1

	0
	0

	0
	0

Table 12: FOA Matrix for Mono Renderer Output Mode

	1

	0

	0

	0

Table 13: Constants used in renderer matrices
	Name
	Formula
	Value

	LFE_MIX
	10^(5.5/20)
	1.88364909

	M_3DB
	10^(-3/20)
	0.70794578

5
References

[1] Pdoc IVAS-3: IVAS Performance Requirements, v 0.0.4.
[2] Recommendation ITU-R BS.2051-2 (07/2018): “Advanced sound system for programme
production”.
[3] AES69-2015: AES standard for file exchange - Spatial acoustic data file format
3GPP

