3GPP TSG SA WG-4 Meeting #104
S4-190851
Ljubljana, Slovenia, 8-12 August 2019

Source:
Qualcomm Incorporated

Title:
Client APIs for 5GMS
Document for:
Discussion and Agreement
Agenda Item:
8.8
1
Introduction
This document provides a proposal Client APIs. This predominantly addresses requirements on the device capabilities on M9d.X and M10.x as well as M8d.X as shown below. The proposal is to align with TS26.347 clause 6 and clause 7. The focus is on M9/10d.X
[image: image1.emf]5G Network

5GMS Server

UE

5GMS Client

5GMS Player

5G Modem

5GMS

Control

Client

5GMS-Aware

Application

Application Data

UDP

Application Protocol Client (e.g. HTTP,

WebSocket)

Media Access Client (e.g. Manifest Processor)

Media Decapsulation and Decryption

Media Decoders

5GMS U- Server

5G gNB

Media AFs

(5GMS Control

Network)

Media Access Server (e.g. Manifest Generator)

Media Encapsulation and

Encryption

Media Encoders

Presentation

Authoring

M5/6/7d => M5d.X

5GMS-Cd APIs (M9d.X, M10d)

TCP

IP

Client Internal-APIs (M12d)

M1d

5G Radio

IP

DRM Client

DRM Server

5GMS-L APIs (M11d.X)

Application Protocol Server

TCP UDP

M13d

PCF

Not in 5G MS

scope except

usage guidelines

Not in 5G MS scope except

usage guidelines

M3d

Application and Content Provider

Network External Media Application Servers

M4d.5

Presentation Authoring

M4d.4

M4d.3

M4d.2

M4d.1

M4d

M2d

NEF

Not in 5G MS scope except

usage guidelines

5GMS-Md APIs (M8d.X)

2
Existing APIs in TS26.347
Table 6.3.3.1-1 provides an overview over the methods defined for the Streaming Delivery Application Service API. Different types are differentiated, namely state changes triggered by the MAA, status query of the MAA to the client, parameter updates as well as notifications from the client. The direction of the main communication flow between MAA (A) and MBMS Client (C) is provided.

Table 6.3.3.1-1: Methods defined for Streaming Delivery Application Service API

	Method
	Type
	Direction
	Brief Description
	Section

	registerStreamingApp
	State change
	A -> C
	MAA registers a callback listener with the MBMS client
	6.3.3.2

	deregisterStreamingApp
	State change
	A -> C
	MAA deregisters with the MBMS client
	6.3.3.10

	startStreamingService
	State change
	A -> C
	Starts streaming service
	6.3.3.7

	stopStreamingService
	State change
	A -> C
	Stop streaming service
	6.3.3.9

	getStreamingServices
	Status query
	C <-> A
	Get list of currently active services
	6.3.3.4

	getVersion
	Status query
	C <-> A
	Retrieves the list of files previously captured for the MAA
	6.3.3.13

	setStreamingServiceClassFilter
	Update to parameter list
	A -> C
	MAA sets a filter on file delivery services in which it is interested
	6.3.3.5

	registerStreamingResponse
	Update to parameter list
	C-> A
	The response to the MAA streaming service register API
	6.3.3.3

	serviceStarted
	Notification
	C -> A
	Notification to MAA when the streaming service started.
	6.3.3.8

	streamingServiceListUpdate
	Notification
	C -> A
	Notification to MAA on an update of the available for DASH streaming delivery services
	6.3.3.6

	streamingServiceError
	Notification
	C -> A
	Notification to MAA when there is an error with the download of service
	6.3.3.12

	serviceStalled
	Notification
	C -> A
	Notification to MAA that download DASH segments failed
	6.3.3.11

3
API Handing Discussion
The below shows the app to MBMS client initialization for streaming services. [image: image2.emf]MBMS Aware

Application

MBMS Client BM-SC

Periodic Service Discovery(based on configuration parameter)

registerStreamingApp()

deregisterStreamingApp()

getStreamingServices()

registerStreamingResponse()

This assumes that the app registers with the following parameters:
-
string appId – provides a unique ID for the MAA registering with the MBMS client, which uses this identity to maintain state information for a particular MAA. The uniqueness of the ID is in the context of any MAA that may possibly register with MBMS client. Uniqueness is typically provided on platform level.

-
any platformSpecificAppContext – a platform-specific context for the registering MAA that enables the MBMS client to get extra information about the MAA that may be need to enable the MAA to have access to MBMS services, e.g., to enable MAA authentication or to enable the MAA to communicate with the MBMS client via platform (e.g., HLOS) services.

-
sequence<string> serviceClassList – provides a comma-separated list of service classes which the MAA is interested to register. Each service class string can be any string or it may be empty.

-
ILTEFileDeliveryServiceCallback callBack – provides the MBMS client with the call back functions associated with DASH Streaming Application Service APIs for the registering MAA.
Such an approach means that the application registers with a service class, which may make sense for example if multiple services are included. It may also be that only for single service registering happens.

Preferably, media session handling should be activated by the app.

Generally, three approaches may be taken:

1) A simple API that triggers and wakes up the session handler in order to connect with the Media AF. Then the Media AF and Media Session Handler exchange details about session aspects. This can be based on a Service Description provided by the Media AF to the Media Session handler. Note that this may also be implemented by a dedicated URL form.
2) The Service Description is provided through external means and handed to the media session handler to initiate all communication with the media AF.
3) The application gets sufficient information for deciding on what media session functions to use and trigger.
Based on the three, it is proposed that
· only the first 2 are progressed,
· the application can be informed on which services are available and may individually activate or deactivate those.
Another question is how to get the streaming URI. The getStreamingServices() API call in TS26.347 looks at this.

The registerStreamingApp() interface returns the complete list of available Streaming Services information. After a successful registration with the MBMS client, the MAA can use the getStreamingServices() API to discover the available Streaming Services associated with the service classes registered via the registerStreamingApp().

The getStreamingServices() API returns a list describing the available DASH Streaming Services, where each service is described by the following output only parameters:

-
sequence<ServiceNameLang> serviceNameList – optionally provides a list of the service title name in possibly different languages. Each (name, lang) pair defines a title for the service on the language indicated.

-
string name – offers a title for the user service on the language identified in the lang parameter.

-
string lang – identifies a natural language identifier per RFC 3066 [10].

-
string serviceClass – identifies the service class which is associated with the service.

-
string serviceId – provides the unique service ID for the service. The uniqueness is among all services provided by the BMSC.

-
string serviceLanguage – indicates the available language for the service and represented as an identifier per RFC 3066 [10].

-
EmbmsCommonTypes::ServiceAvailabilityType serviceBroadcastAvailability – signals whether the UE is currently in the broadcast coverage area for the service.

-
The possible values are:

-
BROADCAST_AVAILABLE – if content for the service is broadcast at the current device location.

-
BROADCAST_UNAVAILABLE – if content for the service is not broadcast at the current device location.

-
SERVICE_UNAVAILABLE – if content for the service is at all available at the current device location.

-
string mpdUri – provides an HTTP URL where the MPD for the DASH Streaming Application Service is hosted and available for DASH clients access.

-
EmbmsCommonTypes::Date activeServicePeriodStartTime – signals the current/next active DASH Streaming Application Service start time, when DASH media segments and other resources start being broadcast over the air.

-
EmbmsCommonTypes::Date activeServicePeriodEndTime – signals the current/next active DASH Streaming Application Service stop time, when DASH media segments and other resources stop being broadcast over the air.

Based on the above discussion, the entry point to the streaming session is provided from the media session handler to the app.
For 5GMS, three options exist:

1) the media entry point is provided as part of the service description and is handed from the media session handler to the application

2) the media entry point is provided directly to the application and the service definition is only initializing the control aspects.

3) The media entry point is not even provided to the application, but the start of the media session is handled by the 5GSM client.

In principle, at least options 1-2 are valid. This allows that the application controls the media client, for example for stop/start/pause and so on. We believe that option 3 should currently not be pursued as otherwise new API calls for media playback control would have to be defined.
Another open question is, to what extent the playback can be started without starting the media session by the application.

The startStreamingService() API in TS 26.347 provides some insight for MBMS. The streaming service is started by the application. Once started, the playback can be initiated by handing the MPD URL to the media client.
[image: image3.emf]startStreamingService()

stopStreamingService()

MBMS Aware

Application

MBMS Client

Iniitiate File Download, e.g. open FLUTE

session (local multicast join) and receive

segment file(s) and perform FEC decode

Multimedia

DASH Client

serviceStarted()

Start Playback (MPD url)

Terminate File Download

Stop Playback

Get MPD/DASH Segments

Figure 6.3.3.7-1: MAA starts DASH streaming services
Again two options exist for 5GMS
1) Playback can be started independent of the media control session
2) Playback can only be started once media control session is established

Likely again both options are valid and not one should be excluded for now.

�	Dr. Thomas Stockhammer, tsto@qti.qualcomm.com

Page: 1/1

Page: 2/2

