

	
3GPP TSG-SA4 Meeting #104	S4-190654
Cork, Ireland, June 1 - 5, 2019
	CR-Form-v12.0

	DRAFT CHANGE REQUEST

	

	
	26.118
	CR
	<CR#>
	rev
	<Rev#>
	Current version:
	15.1.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	X
	Radio Access Network
	
	Core Network
	

	

	Title:	
	New VR metrics clause

	
	

	Source to WG:
	Ericsson LM

	Source to TSG:
	S4

	
	

	Work item code:
	VRQoE
	
	Date:
	2019-06-25

	
	
	
	
	

	Category:
	B
	
	Release:
	Rel-16

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	[bookmark: OLE_LINK1]Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
Rel-12	(Release 12)
Rel-13	(Release 13)
Rel-14	(Release 14)
Rel-15	(Release 15)
Rel-16	(Release 16)

	
	

	Reason for change:
	The work item VRQoE has been approved, aiming at adding relevant VR metrics to this specification.

	
	

	Summary of change:
	Add a new clause for VR metrics.

	
	

	Consequences if not approved:
	Difficult to measure characteristics related to the VR service performance.

	
	

	Clauses affected:
	3.3, 9 (new)

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	

Page 1

[bookmark: _Toc532289946]================ First change =================
3.3	Abbreviations
For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].
3DOF	3 Degrees of freedom
ACN	Ambisonics Channel Number
API	Application Programming Interface
AVC	Advanced Video Coding
BMFF	Base Media File Format
BPSPA	Bits Per Second Per Area
BRIR	Binaural Room Impulse Response
CMP	Cube-Map Projection
CIBR	Common Informative Binaural Renderer
DASH	Dynamic Adaptive Streaming over HTTP
DRC	Dynamic Range Control
EOTF	Electro-Optical Transfer Function
ERP	EquiRectangular Projection
ESD	Equivalent Spatial Domain
FFT	Fast Fourier Transform
FIR	Finite Impulse Response
FOA	First Order Ambisonics
FOV	Field Of View
GPU	Graphics Processing Unit
HDR	High Dynamic Range
HDTV	High Definition TeleVision
HEVC	High Efficiency Video Coding
HMD	Head Mounted Display
HOA	High Order Ambisonics
HRD	Hypothetical Reference Decoder
HRIR	Head-Related Impulse Responses
HRTF	Head-Related Transfer Function
HTTP	HyperText Transfer Protocol
IFFT	Inverse FFT
IRFFT	Inverse RFFT
MAE	MPEG-H Audio Metadata information
MCC	Metrics Collection and Computation
MHAS	MPEG-H Audio Stream
MIME	Multipurpose Internet Mail Extensions
MPD	Media Presentation Description
MPEG	Moving Pictures Experts Group
NAL	Network Abstraction Layer
OMAF	Omnidirectional MediA Format
PCM	Pulse Code Modulation
QR	Quality Ranking
RAP	Random Access Point
RFFT	Real FFT
RWP	Region-Wise Packing
SDR	Standard Dynamic Range
SEI	Supplemental Enhancement Information
SN3D	Schmidt semi-normalisation
SOFA	Spatially Oriented Format for Acoustics
SPS	Sequence Parameter Set
SRQR	Spherical Region-wise Quality Ranking
VCL	Video Coding Layer
VST	Virtual Studio Technology
VUI	Video Usability Information
VR	Virtual Reality

================ Next change =================
[bookmark: _Toc532290068]9	VR Metrics
[bookmark: _Toc532290069]9.1	General
VR metrics is a functionality where the client collects specific quality-related metrics during a session. These collected metrics can then be reported back to a network side node for further analysis. The metric functionality is based on the QoE metrics concept in 3GP-DASH [8], but further extended to also cover VR-specific metrics. A VR client supporting VR metrics shall support all metrics listed in clause 9.3, and shall handle metric configuration and reporting as specified in clauses 9.4 and 9.5.
[bookmark: _Toc9527533]9.2	VR Client Reference Architecture
The client reference architecture for VR metrics, shown below, is based on the client architecture in Figure 4.3-1. It also contains a number of observation points where specific metric-related information can be made available to the Metrics Collection and Computation (MCC) function. The MCC can use and combine information from the different observation points to calculate more complex metrics.
Note that these observation points are only defined conceptually, and might not always directly interface to the MCC. For instance, an implementation might relay information from the actual observation points to the MCC via the VR application. It is also possible that the MCC is not separately implemented, but simply included as an integral part of the VR application.
Also note that in this version of this specification not all of the described observation points are used to produce VR metrics.
 [image:]
Figure 9.2-1: Client reference architecture for VR metrics
[bookmark: _Toc9527534]9.2.1	Observation Point 1
The access engine fetches the MPD, constructs and issues segment requests for relevant adaptation sets or preselections as ordered by the VR application, and receives segments or parts of segments. It may also adapt between different representations due to changes in available bitrate. The access engine provides a conforming 3GPP VR track to the file decoder.
The interface from the access engine towards MCC is referred to as observation point 1 (OP1) and is defined to monitor:
-	A sequence of transmitted network requests, each defined by its transmission time, contents, and the TCP connection on which it is sent
-	For each network response, the reception time and contents of the response header and the reception time of each byte of the response body
-	The projection/orientation metadata carried in network manifest file if applicable
-	The reception time and intended playout time for each received segment
[bookmark: _Toc9527535]9.2.2	Observation Point 2
The file decoder processes the 3GPP VR Track and typically includes a file parser and a media decoder. The file parser processes the file or segments, extracts elementary streams, and parses the metadata, if present. The processing may be supported by dynamic information provided by the VR application, for example which tracks to choose based on static and dynamic configurations. The media decoder decodes media streams of the selected tracks into the decoded signals. The file decoder outputs the decoded signals and metadata which is used for rendering.
The interface from the file decoder towards MCC is referred to as observation point 2 (OP2) and is defined to monitor:
-	Media resolution
-	Media codec
-	Media frame rate
-	Media projection, such as region wise packing, region wise quality ranking, content coverage
-	Mono vs. stereo 360 video
-	Media decoding time
[bookmark: _Toc9527536]9.2.3	Observation Point 3
The sensor extracts the current pose according to the user's head and/or eye movement and provides it to the renderer for viewport generation. The current pose may also be used by the VR application to control the access engine on which adaptation sets or preselections to fetch.
The interface from the sensor towards MCC is referred to as observation point 3 (OP3) and is defined to monitor:
-	Head pose
-	Gaze direction
-	Pose timestamp
-	Depth
[bookmark: _Toc9527537]9.2.4	Observation Point 4
The VR Renderer uses the decoded signals and rendering metadata, together with the pose and the knowledge of the horizontal/vertical field of view, to determine a viewport and render the appropriate part of the video and audio signals.
The interface from the media presentation towards MCC is referred to as observation point 4 (OP4) and is defined to monitor:
-	The media type
-	The media sample presentation timestamp
-	Wall clock counter
-	Actual presentation viewport
-	Actual presentation time
-	Actual playout frame rate
-	Audio-to-video synchronization
-	Video-to-motion latency
-	Audio-to-motion latency
[bookmark: _Toc9527538]9.2.5	Observation Point 5
The VR application manages the complete device, and controls the access engine, the file decoder and the rendering based on media control information, the dynamic user pose, and the display and device capabilities.
The interface from the VR application towards MCC is referred to as observation point 5 (OP5) and is defined to monitor:
-	Display resolution
-	Max display refresh rate
-	Field of view, horizontal and vertical
-	Eye to screen distance
-	Lens separation distance
-	OS support, e.g. OS type, OS version
9.3	Metrics Definitions
9.3.1	General
As the VR metrics functionality is based on the DASH QoE metrics [8], all metrics already defined in [8] are valid also for a VR client. Thus the following sub-clauses only define additional VR-related metrics.
[bookmark: _Toc9527564]9.3.2	Presentation Delay
[bookmark: _Toc9527565]9.3.2.1	Introduction
The presentation delay metric is measuring the delay between the wanted presentation time for a DASH segment, and the actual (maybe delayed) presentation time. Note that this is not exactly the same as "motion to photon delay" or "motion to high-quality content", as segments might arrive late not only due to user movement and interaction, but also due to other reasons.
During playout the playhead position continuously moves forward unless the playout stops due to rebuffering. As any rebuffering is handled by the rebuffering metric (i.e. derived from the PlayList metric in [8]), the presentation delay metric only deals with the possibly late arrival of video data during ongoing playout.
Thus the presentation delay for any DASH segment received is the difference between the intended segment start time and the current playhead position. If the segment start time is later then the playhead position, the data is available on time (if any further device-internal processing delay is disregarded). If the segment start time is earlier than the playhead position, the segment is late.
Different variants of the presentation delay metric can be supported by the VR client, with varying degree of accuracy and implementation complexity. A VR client supporting VR metrics shall support at least variant #1, and shall also report which variant it has used for metric calculations.
[bookmark: _Toc9527566]9.3.2.2	Variant #1: Ignoring viewport and encoding quality
A low-complex implementation is to ignore the actual viewport seen by the user, and assume that the VR client does only request segments which are relevant. For instance, for multiple-stream region-dependent encodings, it is assumed that the client changes to a more appropriate track when the user moves his head, and that all data requested and later received is actually used and relevant. In the same way, for region-based encodings, the regions (e.g. the tiles) requested and received are assumed to be relevant.
Thus for every DASH segment received, a delay is calculated based on the current playhead position and the defined start time for the received segment. If the segment request was done after the defined start time, the time of the segment request is used instead of the defined start time (to handle the case when only a part of a segment is needed). If the delay is negative (i.e. the segment arrived on time), the segment delay is set to zero.
Note that all segments are treated equally even if some segments are likely much more important, so this implementation is only a crude estimate of the impact on the user experience.
[bookmark: _Toc9527567]9.3.2.3	Variant #2: Considering viewport but not encoding quality
A more complex implementation is to only consider delays which are likely to be visible to the user. For instance, when a DASH segment is received, the segment delay is calculated as for variant #1, but the content coverage of the segment is also derived (e.g. via the CC metadata from the MPD).
The current viewport coverage is also derived (e.g. from the sensor and device data), and the overlap between the segment and the viewport is calculated. The segment delay is only considered if there is any overlap (alternatively, the delay is weighted by the percentage of the viewport covered by the segment).
Note that as the encoding quality of the content is not considered, a low-resolution background segment (which likely has large coverage) might be weighted higher than a high-resolution segment. Also, as the overlap is calculated when the segment is received, the user might have moved the viewport when the data in the segment is later rendered.
[bookmark: _Toc9527568]9.3.2.4	Variant #3: Considering viewport and bitrate-based encoding quality
An even more complex implementation is to also consider the encoding quality. Encoding quality for a segment shall be approximated as BPSPA (bits per second per area, i.e. segment size divided by segment length divided by the angular area coverage).
The current "steady state" high quality level shall be estimated by using the maximum BPSPA value seen within a certain measurement window. In addition to the content and viewport overlap calculated as for variant #2, the segment delay is only considered if the segment quality is close enough to the steady state quality level. Thus low-quality background segments will not contribute to the delay measurements.
Note that also in this implementation the evaluation is done when a segment is received, so any head movements between evaluation and actual rendering is not accounted for.
9.3.2.5	Variant #4: Considering viewport and QR-based encoding quality
This implementation is similar to variant #3, but instead of bitrate the encoding quality estimate is based on the QR (Quality Ranking) as reported by the MPD. Thus the segment delay is only considered if the segment QR value is the same or better than the best QR values seen during a certain measurement window.
[bookmark: _Toc9527570]9.3.2.6	Filtering
The previous clauses only describe how individual per-segment delay measurements are done, but to be practically useful these can be filtered. Reporting all individual segment delays might be too bandwidth-demanding, especially for region-based (e.g. tiled) encodings. Thus, the client can be configured to use the following filters:
-	DelayThreshold: In milliseconds, only report segments which arrive later than this threshold. Default value is 0 ms, i.e. report only late segments.
-	ViewportThreshold: In percent, only report segments which cover more than this percentage of the viewport. Default value is 0%, i.e. report only visible segments.
-	BitrateThreshold: In percent, only report segments which have a BPSPA value higher than this percentage of the steady-state BPSPA value. Default value 50%.
-	SteadyStateWindow: In seconds, defines the number of seconds which are used to estimate the steady-state high quality level. The maximum BPSPA or best QR value seen during this time is used as the steady-state level. Default value is 30 seconds.
These optional filters are configured as a comma-separated list within parenthesis for the PresentationDelay metric, e.g. "PresentationDelay(DelayThreshold:10,ViewportThreshold:15,BitrateThreshold:75,SteadyStateWindow:10)".
[bookmark: _Toc9527571]9.3.2.7	Metric format
The table below describes the metric format for the presentation delay. Only the calculationVariant, timestamp, playheadPosition and presentationDelay fields are mandatory, while the viewportCoverage and the relativeQuality fields are only reported if supported by the client.
Table 9.3.2.7-1: Presentation delay metric
	Key
	Type
	Description

	PresentationDelay
	Object
	

	
	calculationVariant
	Integer
	The variant used by the client when calculating the segment delays

	
	SegmentList
	List
	A list of received segments fulfilling the delay, coverage and quality thresholds

	
	
	Entry
	Object
	An object containing information for one segment

	
	
	
	timestamp
	Real-Time
	Reception time for the segment

	
	
	
	playheadPosition
	Media-Time
	Playhead position when receiving the segment

	
	
	
	presentationDelay
	Integer
	Delay compared to intended segment presentation time, in milliseconds

	
	
	
	viewportCoverage
	Float
	Percentage 0-100 of viewport covered by the segment (optional)

	
	
	
	relativeQuality
	Float
	Segment BPSPA percentage 0-100 relative to the steady-state BPSPA value (optional)

[bookmark: _Toc9527572]9.3.2.8	Metric examples
The following figures illustrate a few possible scenarios for calculation of presentation delay for a given segment. The assumption in the examples are that the content has different regions, so that the client will fetch different content depending on where the user is watching.
The examples show when segments are requested, when they are received, decoded and rendered. For practical illustration purposes the buffer (i.e. the time difference between segment reception and the corresponding decoding) is probably unrealistically small, but the metric calculations would be the same even if a longer buffer would be used.
[image:]
Figure 9.3.2.8-1: Example 1
The first example above illustrates two cases, one where a segment (B4) arrives on time, and one where another segment (B5) is arriving late. Note that there are no head movements included in this example.
In the first case, the receive time (RT) of B4 is earlier than the nominal start time (ST), and thus the segment is on time, and will be assigned a presentation delay of 0 (zero).
In the second case, the segment B5 arrives late, but the client selects not to stop and rebuffer as the main portion (region A) of the viewport is still available. Thus the B region will not be visible, or only visible as a low-resolution background for some time. This time (i.e. the presentation delay) is calculated as the difference between B5RT and B5ST. Note that the calculation does not account for the additional decoding and rendering delay, so the real delay will be slightly longer.
[image:]
Figure 9.3.2.8-2: Example 2
Example 2 above illustrates a scenario where the user moves his head and changes pose. First the user is seeing region A and B, and after the pose change he instead sees region B and C. The viewport is changed the first red line, and after some small delay the client now requests segment C4, to fill in the missing part of the viewport.
The segment arrives at C4RT, and the presentation delay is calculated as the difference between C4RT and C4ST. The segments B5 and C5 have also been requested by the client, and manage to arrive in time, so these are not causing any additional degradation.
[image:]
Figure 9.3.2.8-3: Example 3
Example 3 above is very similar to example 2, except that here the head movement and the subsequent request for segment C4 happens after the nominal start time of C4. In this case the start time is adjusted to be the request time, so the presentation delay covers the time between the two dashed line, i.e. C4RT and C4ST.
As shown in all examples, the calculation does not include the initial delay between head movement and the time of the segment request, or the decoding and rendering delay, but these should normally be small as compared to the transport delay for the segments.
9.4	Metrics Configuration
9.4.1	General
Metrics configuration is done according to clauses 10.4 and 10.5 in DASH [8], but can also include any metrics defined in clause 9.3 above.
9.5	Metrics Reporting
9.5.1	General
Metrics reporting is done according to clause 10.6 in DASH [8], with the additional VR-specific metrics reported according the the XML schema in clause 9.5.2.
9.5.2	Reporting Format
	<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="urn:3gpp:metadata:2019:VR:metrics"
xmlns:sv="urn:3gpp:metadata:2016:PSS:schemaVersion"
 xmlns="urn:3gpp:metadata:2019:VR:metrics" elementFormDefault="qualified">

 <xs:element name="VrMetrics" type="VrMetricsType"/>

 <xs:complexType name="VrMetricsType">
 <xs:sequence>
 <xs:element name="Metric" type="MetricType" minOccurs="1" maxOccurs="unbounded"/>
 <xs:element ref="sv:delimiter"/>
 <xs:any namespace="##other" processContents="skip" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute processContents="skip"/>
 </xs:complexType>

 <xs:complexType name="MetricType">
 <xs:choice>
 <xs:element name="Metric1" type="Metric1Type"/>
 <xs:element name="Metric2" type="Metric2Type"/>
 </xs:choice>
 <xs:anyAttribute processContents="skip"/>
 </xs:complexType>

</xs:schema>

	

image1.png

image2.png

image3.png

image4.png

