

	
DASH	player’s	Application	Events	
and	Timed	Metadata	Processing	
Models	and	APIs	
Living	Document,	4	April	2019	

This	version:		
https://dashif.org/guidelines/name-of-doc

Issue	Tracking:		
GitHub
Editors:		

DASH Industry Forum

Table	of	Contents	

1. 1 DASH player architecture for processing DASH events and timed metadata
tracks

2. 2 Event and Timed metadata sample timing models
1. 2.1 Inband Event timing parameters
2. 2.2 Event message box format and event timing parameters
3. 2.3 MPD Events timing model
4. 2.4 Timed metadata sample timing model
3. 3 Events and timed metadata sample dispatch timing modes
1. 3.1 The Dispatch Processing Model
1. 3.1.1 Prerequisite
2. 3.1.2 Common process
3. 3.1.3 On-receive processing
4. 3.1.4 On-start processing
2. 3.2 The event/metadata buffer model
4. 4 Prose description of APIs
5. Conformance
6. Index
1. Terms defined by this specification
7. References
1. Normative References

1.	DASH	player	architecture	for	processing	DASH	
events	and	timed	metadata	tracks	

Figure 1 demonstrates a generic architecture of the DASH player including
DASH Events and timed metadata tracks processing models.

Figure 1: DASH player architecture including the inband Event and Application-
related timed metadata handling

In the above figure:

1. DASH player processes the MPD. If the manifest includes any MPD Events, it
parses them and appends them to the Event & Timed Metadata Buffer.

2. Based on the MPD, DASH player manages fetching and parsing the Segments
before appending them into the media decoder input buffer (named 'Media
Buffer' in the Figure 1).

3. Parsing a Segment includes:

a. parse the high-level boxes such as Segment Index (sidx) and Event Message
boxes, and append Event Message boxes to the Event & Metadata Buffer.

b. For an Application-related timed metadata track, extracting the data samples,
and appending them to the Event & Metadata Buffer.

c. For media segments, parse the segments and append them to Media Buffer.

4. The DASH player-specific Events are passed to the DASH player control function
(named 'DASH Client Control, Selection & Heuristic Logic' in Figure 1), while the
Application-related Events and timed metadata track samples are passed to the
Event & Metadata Synchronizer and Dispatcher function.

5. If an Application is subscribed to a specific Event or timed metadata stream,
dispatch the corresponding event instances or timed metadata samples,
according to the dispatch mode:

a. For On-receive dispatch mode, dispatch the Event information or timed
metadata samples as soon as they are received(or no later than AT).

b. For On-start dispatch mode, dispatch the Event information or timed
metadata samples at their associated presentation time, using the
synchronization signal from the media decoder.

2.	Event	and	Timed	metadata	sample	timing	models	

2.1.	Inband	Event	timing	parameters	

Figure 2 presents the timing of an inband Event along the media timeline:

Figure 2: The inband event timing parameter on the media timeline

As shown in Figure 2, every inband Event can be described with three timing
parameters on the media timeline:

1. Event Arrival Time (AT) which is the earliest presentation time of the Segment
containing the Event Message box.

2. Event Presentation/Start Time (ST) which is the moment in the media timeline
that the Event becomes active.

3. Event duration (DU): the duration for which the Event is active

An inband Event is inserted in the beginning of a Segment. Since each media
segment has an earliest presentation time equal to (AT), AT of the Segment
carrying the Event Message box can be considered as the location of that box on
the media timeline. The DASH player has to fetch and parse the Segment before
or at its AT (at AT when it’s assumed that the decoding and rendering of the
segment incurs practically zero delay). Therefore, the Event inserted in a
Segment at its AT time will be ready to be processed and fetched no later than
AT on the media timeline.

The second timing parameter is Event Presentation/Start Time (ST). ST is the
moment in the media timeline that the Event becomes active. This value can be
calculated using the parameters included in Event Message box.

The third parameter is Event Duration (DU), the duration for which the Event is
considered to be active. DU is also signaled in the Event Message box using a
specific value.

2.2.	Event	message	box	format	and	event	timing	parameters	

Table 1 shows the emsg box format in DASH:

aligned(8) class DASHEventMessageBox extends FullBox (‘emsg’,
version, flags = 0){
 if (version==0) {
 string scheme_id_uri;
 string value;
 unsigned int(32) timescale;
 unsigned int(32) presentation_time_delta;
 unsigned int(32) event_duration;
 unsigned int(32) id;
 } else if (version==1) {
 unsigned int(32) timescale;
 unsigned int(64) presentation_time;
 unsigned int(32) event_duration;
 unsigned int(32) id;
 string scheme_id_uri;
 string value;
 }
 unsigned int(8) message_data();
}

Table 1: The emsg box format and parameters

The ST of an event can be calculated using values in its emsg box:

𝑆𝑇 =

⎩
⎨

⎧ 𝐴𝑇	 +	
𝑝𝑟𝑒𝑠𝑒𝑛𝑒𝑡𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒_𝑑𝑒𝑙𝑡𝑎

𝑡𝑖𝑚𝑒𝑠𝑐𝑎𝑙𝑒 																																																																																																												𝑣𝑒𝑟𝑠𝑖𝑜𝑛	0

𝑃𝑒𝑟𝑖𝑜𝑑𝑆𝑡𝑎𝑟𝑡	 +	
𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝐵𝑎𝑠𝑒@𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒𝑂𝑓𝑓𝑠𝑒𝑡

𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝐵𝑎𝑠𝑒@𝑡𝑖𝑚𝑒𝑠𝑐𝑎𝑙𝑒 	+	
𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒

𝑡𝑖𝑚𝑒𝑠𝑐𝑎𝑙𝑒 															𝑣𝑒𝑟𝑠𝑖𝑜𝑛	1	

Equation 1: Event Start Time of an inband event

Where PeriodStart is the corresponding Period‘s start time, and
presentationTimeoffset and timescale are the Presentation Time Offset (PTO)
and time scale of the corresponding Represenation.

Note: ST is always equal to or larger than AT in both versions of emsg.

Note: Since the media sample timescales might be different than emsg’s
timescale, ST might not line up with a media sample if different timescales are
used.

Note: If various Adaptation Sets carry the same events, different Adaptation
Sets/Representations with different PTOs, the presentation_time_delta and/or
presentation_time values might be different per Adaptation Set/Representation,
i.e. the same emsg box can not be replicated over multiple Representations
and/or Adaptations Sets.

Note: In the case of CMAF, PeriodStart is the CMAF track’s earliest presentation
time.

In this document, we use the following common variable names instead of some
of above variables to harmonize parameters between Inband events, MPD
events, and timed metadata samples:

• scheme_id = scheme_id_uri

• duration = event_duration

• message_data = message_data()

2.3.	MPD	Events	timing	model	

MPD Events carry the similar data model as inband Events. However, the former
type is are carried in the MPD, under the Period elements. Each Period event
has EventStream element(s), defining the schemeIdUri, value, timescale and a
sequences of Event elements. Each event may have presentationTime,
duration, id and messageData attributes, as shown in Table 2.

Element or
Attribute Name

Use Description

EventStream

specifies event Stream

@xlink:href O specifies a reference to an

external EventStream element

@xlink:actuate

OD

default:
onRequest

specifies the processing
instructions, which can be either
"onLoad" or "onRequest".

This attribute shall not be
present if the @xlink:href
attribute is not present.

@schemeIdUri M identifies the message scheme.

The string may use URN or URL
syntax. When a URL is used, it
is recommended to also contain
a month-date in the form
mmyyyy; the assignment of the
URL must have been authorized
by the owner of the domain
name in that URL on or very
close to that date. A URL may
resolve to an Internet location,
and a location that does resolve
may store a specification of the
message scheme.

@value O specifies the value for the event

stream element. The value
space and semantics must be
defined by the owners of the
scheme identified in the
@schemeIdUri attribute.

@timescale

O
specifies the timescale in units
per seconds to be used for the
derivation of different real-time
duration values in the Event
elements.

If not present on any level, it
shall be set to 1.

Event 0 ... N specifies one event. For details

see Table 5.31.

Events in Event Streams shall be
ordered such that their
presentation time is non-
decreasing.

Legend:
For attributes: M=Mandatory, O=Optional, OD=Optional with Default Value,
CM=Conditionally Mandatory.
For elements: <minOccurs>...<maxOccurs> (N=unbounded)
Elements are bold; attributes are non-bold and preceded with an @.

Element or Attribute Name
Use Description

Event

specifies an event and
contains the message
of the event, formatted
as a string. The content
of this element
depends on the event
scheme.

@presentationTime OD

default:
0

specifies the
presentation time of the
event relative to the
start of the Period.

The value of the
presentation time in
seconds is the division
of the value of this
attribute and the value
of the @timescale
attribute.

If not present, the value
of the presentation time
is 0.

@duration

O
specifies the
presentation duration of
the event.

The value of the
duration in seconds is
the division of the value
of this attribute and the
value of the
@timescale attribute.

If not present, the value
of the duration is
unknown.

 @id O specifies an identifier
for this instance of the
event. Events with
equivalent content and
attribute values in the
Event element shall
have the same value
for this attribute.

The scope of the @

id for each Event is with
the same @schemeIdURI
and @value pair.

@messageData O specifies the value for

the event stream
element. The value
space and semantics
must be defined by the
owners of the scheme
identified in the
@schemeIdUri
attribute.

NOTE: this attribute is
an alternative to
specifying a complete
XML element(s) in the
Event. It is useful when
an event leans itself to
a compact string
representation

Legend:
For attributes: M=Mandatory, O=Optional, OD=Optional with Default Value,
CM=Conditionally Mandatory.
For elements: <minOccurs>...<maxOccurs> (N=unbounded)
Elements are bold; attributes are non-bold and preceded with an @.

Table 2: MPD Event elements

As is shown in Figure 3, each MPD Event has three associated timing
parameters along the media timeline:

1. The PeriodStart Time (AT) of the Period element containing the EventStream
element.

2. Event Start Time (ST): the moment in the media timeline that a given MPD Event
becomes active and can be calculated from the attribute
<{Event@presentationTime}>.

3. Event duration (DU): the duration for which the event is active that can be
calculated from the attribute <{Event@duration}>.

Note that the first parameter is inherited from the Period containing the Events
and only the 2nd and 3rd parameters are explicitly included in the Event element.
Each EventStream also has timescale to scale the above parameters.

Figure 3 demonstrates these parameters in the media timeline.

Figure 3: MPD events timing model

The ST of an MPD event can be calculated using values in its EventStream and
Event elements:

𝑆𝑇	 = 		𝑃𝑒𝑟𝑖𝑜𝑑𝑆𝑡𝑎𝑟𝑡	 +	
𝑬𝒗𝒆𝒏𝒕@𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑚𝑒𝑇𝑖𝑚𝑒
𝑬𝒗𝒆𝒏𝒕𝑺𝒕𝒓𝒆𝒂𝒎@𝑡𝑖𝑚𝑒𝑠𝑐𝑎𝑙𝑒

Equation 2: Event Start Time of MPD event

In this document, we use the following common variable names instead of some
of above variables to harmonize parameters between Inband events, MPD
events, and timed metadata samples:

• scheme_id = schemeIdUri

• value = value

• timescale = timescale

• duration = duration

• id = id

• message_data = messageData

2.4.	Timed	metadata	sample	timing	model	

Figure 4 shows the timing model for a given timed metadata sample.

Figure 4: Timing parameters of a timed metadata sample on the media timeline

As shown in this figure, the metadata sample timing including metadata sample
presentation time (ST) and metadata sample duration (DU). Also one or multiple
metadata samples are included in a segment with Segment start time (AT).

Note that the metadata sample duration can not go beyond segment duration, i.e.
to the next segment. In the case of CMAF, the same constraints is maintained for
CMAF Chunks.

In this document, we use the following common variable names instead of some
of above variables to harmonize parameters between Inband events, MPD
events, and timed metadata samples:

• scheme_id = timed metadata track URI

• timescale = timed metadata track timescale in mdhd box.

• ST = timed metadata sample presentation time

• duration = timed metadata sample duration

• message_data = timed metadata sample data in mdat

3.	Events	and	timed	metadata	sample	dispatch	timing	
modes	

Figure 5 shows two possible dispatch timing models for DASH events and timed
metadata samples.

Figure 5: The Application events and timed metadata dispatch modes

In this figure, two modes are shown:

1. On-receive Dispatch Mode: Dispatching at AT or earlier. Since the segment
carrying an emsg/metadata sample has to be parsed before (or assuming zero
decode/rendering delay as the latest at) AT on the media timeline, the
event/metadata sample shall be dispatched at this time or before to Application in
this mode. Application has a duration of ST-AT for preparing for the event. In this
mode, the client doesn’t need to maintain states of Application events or
metadata samples either. Application may have to maintain the state for any
event/metadata sample, its ST and DU, and monitor its activation duration, if it
needs to. Application also needs to schedule each event/sample at its ST, so it
must be time-aware to properly make use of these timing parameters.

2. On-start Dispatch Mode: Dispatching exactly at ST, which is the
start/presentation time of the event/metadata sample. The DASH player shall
calculate the ST for each parsed event/metadata sample and dispatch the
message_data at this exact moment. In this mode, since Application receives the
event/sample at its start/presentation time, it needs to act on the received data
right away, i.e. no advanced notice is given to Application in this mode.
Application however may not need to maintain a state for the events and timed
metadata samples, if the durations and/or the sequence and order of
events/samples are not important to Application. Depending on the nature,
meaning and relationship between different event instances/metadata samples,
Application may need to maintain the state for them.

3.1.	The	Dispatch	Processing	Model	

3.1.1.	Prerequisite	

Application subscribes to specific event stream as described in §4 Prose
description of APIs.

The processing model varies depending on dispatch_mode.

The DASH player shall follow the processing model outlined in this section.

The DASH player shall set up an Active Event Table for each subscribed
scheme_uri/(value) in the case of dispatch_mode = on_start. Active Event Table
maintains a single list of emsg’s id that have been dispatched.

3.1.2.	Common	process	

The DASH player shall implement the following process:

1. Parse the emsg/timed metadata sample and retrieve scheme_uri/(value).

2. If Application is not subscribed to the scheme_uri/(value) pair, end the
processing of this emsg.

3.1.3.	On-receive	processing	

The DASH player shall implement the following process when dispatch_mode =
on_receive:

• Dispatch the event/timed metadata, including ST, id, DU, timescale and
message_data as described in §4 Prose description of APIs.

3.1.4.	On-start	processing	

The DASH player shall implement the following process when dispatch_mode =
on_start:

1. Derive the event instance/metadata sample’s ST

2. If the current presentation time value is smaller than C, then go to Step 5.

3. Derive the ending time ET= ST + DU.

4. If the current presentation time value is greater than ET, then end processing.

5. In the case of event: Compare the event’s id with the entries of Active Event
Table of the same scheme_uri/(value) pair:

o If an entry with the identical id value exists, end processing;

o If not, add emsg’s id to the corresponding Active Event Table.

6. Dispatch the event/metadata message_data at time ST, or immediately if current
presentation time is larger than ST, as described in §4 Prose description of APIs.

3.2.	The	event/metadata	buffer	model	

Along with the media samples, the event instances and timed metadata samples
are buffered. The event/metadata buffer should be managed with same scheme
as the media buffer, i.e. as long as a media sample exists in the media buffer, the
corresponding events and/or metadata samples should be maintained in the
event/metadata buffer.

4.	Prose	description	of	APIs	

The event/timed metadata API is an interface defined between a “DASH player”
as defined in DASH-IF, or a “DASH client” as defined in 3GPP TS 26.247 or
ISO/IEC 23009-1 and a device application in the exchange of subscription data
and dispatch/transfer of matching DASH Event or timed metadata information
between these entities. The Event/timed metadata API is shown at Figure 1.

Note: In this document, the term "DASH player" is used.

The description of the API below is strictly functional, i.e. implementation-
agnostic, is intended to be employed for the specification of the API in Javascript
for the dash.js open source DASH player, and in IDL such as the OMG IDL or
WebIDL. For example, the subscribeEvent() method as defined below may be
mapped to the existing on(type,listener,scope) method as defined for the
dash.js under MediaPlayerEvents.

The state diagram of the DASH player associated with the API is shown below in
Figure 6:

Figure 6: State Diagram of the DASH player for the event/timed metadata API.

The scope of the above state diagram is the entire set of applicable events/timed
metadata streams being subscribed/unsubscribed, i.e. it is not indicating the
state model of the DASH player in the context of a single Event/timed metadata
stream subscription/un-subscription.

The application subscribes to the reception of the desired event/timed metadata
and associated information by the subscribeEvent() method. The parameters to
be passed in this method are:

• app_id – (Optional) A unique ID for the Application subscribing to data dispatch
from the DASH player. Depending on the platform/implementation this identifier
may be used by the DASH player to maintain state information.

• scheme_uri – A unique identifier scheme for the associated DASH
Event/metadata stream of interest to the Application. This string may use a URN
or a URL syntax, and may correspond to either an MPD Event, an inband Event,
or a timed metadata stream identifier. The scheme_uri may be formatted as a
regular expression (regex).

• value – A value of the event or timed metadata stream within the scope of the
above scheme_uri, optional to include. When not present, no default value is
defined – i.e., no filtering criterion is associated with the Event scheme
identification.

• dispatch_mode – Indicates when the event handler function identified in the
callback_function argument should be called:

o dispatch_mode = on_receive – provide the event/timed metadata sample data to
the Application as soon as it is detected by DASH player;

o dispatch_mode = on_start – provide the event/timed metadata sample data to the
App at the start time of Event message or at the presentation time of timed
metadata sample.

• callback_function – the name of the function to be (asynchronously) called for an
event corresponding to the specified scheme_uri/(value). The callback function is
invoked with the arguments described below.

Upon successful execution of the event/timed metadata subscription call (for
which the DASH player will return a corresponding acknowledgment), the DASH
player shall monitor the source of potential Event stream information, i.e., the
MPD or incoming DASH Segments, for matching values of the subscribed
scheme_uri/(value). The parentheses around value is because this parameter
may be absent in the event/timed metadata subscription call. When a matching
event/metadata sample is detected, the DASH player invokes the function
specified in the callbackFunction argument with the following parameters. It
should additionally provide to the Application the current presentation time at the

DASH player when performing the dispatch action. The parameters to be passed
in this method are shown in Table 3 below:

Table 3: Event/timed metadata API parameters and datatypes

Note: In the case of ‘emsg’ version 0, the DASH player is expected to calculate
presentation_time from presentation_time_delta.

In order to remove a listener the unsubscribeEvent() function is called with the
following arguments:

• app_id (Optional)

• scheme_uri - A unique identifier scheme for the associated DASH Event stream
of interest to the Application.

• value

• callback_function

If a specific listener is given in the callback_function argument, then only that
listener is removed for the specified scheme_uri/(value). Omitting or passing null
to the callback_function argument would remove all event listeners for the
specified scheme_uri/(value).

MPD event Inband emsg Metadata Data
Type

‘On-
receive’

‘On-
start’

 schemeIdUri scheme_id_uri
timed
metadata
track URI

N N

 value value N N

 timescale timescale

timed
metadata
track
timescale

unsigned
int(32)

Y N

 presentationTime presentation_time

timed
metadata
sample
presentation
time

unsigned
int(64)

Y N

 duration event_duration
timed
metadata
sample
duration

unsigned
int(32)

Y N

 id id unsigned
int(32)

Y N

 messageData message_data()

timed
metadata
sample data
in mdat

unsigned
int(8) x
messageSize

Y Y

Y= Yes, N= NO, O= Optional

Conformance	

Conformance requirements are expressed with a combination of descriptive
assertions and RFC 2119 terminology. The key words “MUST”, “MUST NOT”,
“REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in the normative parts of this
document are to be interpreted as described in RFC 2119. However, for
readability, these words do not appear in all uppercase letters in this
specification.

All of the text of this specification is normative except sections explicitly marked
as non-normative, examples, and notes. [RFC2119]

Examples in this specification are introduced with the words “for example” or are
set apart from the normative text with class="example", like this:

This is an example of an informative example.

Informative notes begin with the word “Note” and are set apart from the
normative text with class="note", like this:

Note, this is an informative note.

Index	

Terms	defined	by	this	specification	

• Active Event Table, in §3.1.1
• cmaf, in §Unnumbered section
• duration, in §2.3
• Event, in §2.3
• event_duration, in §2.2
• EventStream, in §2.3
• id
o definition of, in §2.2

o element-attr for Event, in §2.3

• messageData, in §2.3
• message_data(), in §2.2
• On-receive, in §3
• On-start, in §3
• presentation_time, in §2.2

• presentationTime, in §2.3
• presentation_time_delta, in §2.2
• PresentationTimeOffset, in §Unnumbered section
• Presentation time offset, in §Unnumbered section
• schemeIdUri, in §2.3
• scheme_id_uri, in §2.2
• SegmentBase, in §Unnumbered section
• timed metadata sample data in mdat, in §2.4
• timed metadata sample duration, in §2.4
• timed metadata sample presentation time, in §2.4
• timed metadata track timescale, in §2.4
• timed metadata track URI, in §2.4
• timescale
o definition of, in §2.2

o element-attr for EventStream, in §2.3

o element-attr for SegmentBase, in §Unnumbered section

• time scale, in §Unnumbered section
• value
o definition of, in §2.2

o element-attr for EventStream, in §2.3

References	

Normative	References	

[RFC2119]		
S. Bradner. Key words for use in RFCs to Indicate Requirement Levels. March
1997. Best Current Practice. URL: https://tools.ietf.org/html/rfc2119
#element-attrdef-segmentbase-presentationtimeoffsetReferenced in:

• 2.2. Event message box format and event timing parameters (2)
#element-attrdef-segmentbase-timescaleReferenced in:

• 2.2. Event message box format and event timing parameters (2)
#presentation-time-offsetReferenced in:

• 2.2. Event message box format and event timing parameters
#time-scaleReferenced in:

• 2.2. Event message box format and event timing parameters

#cmafReferenced in:
• 2.2. Event message box format and event timing parameters
• 2.4. Timed metadata sample timing model

#scheme_id_uriReferenced in:
• 2.2. Event message box format and event timing parameters (2)
• 4. Prose description of APIs

#valueReferenced in:
• 2.2. Event message box format and event timing parameters
• 4. Prose description of APIs

#timescaleReferenced in:
• 2.2. Event message box format and event timing parameters
• 4. Prose description of APIs

#presentation_time_deltaReferenced in:
• 2.2. Event message box format and event timing parameters
• 4. Prose description of APIs

#event_durationReferenced in:
• 2.2. Event message box format and event timing parameters (2)
• 4. Prose description of APIs

#idReferenced in:
• 2.2. Event message box format and event timing parameters
• 4. Prose description of APIs

#presentation_timeReferenced in:
• 2.2. Event message box format and event timing parameters
• 4. Prose description of APIs (2)

#message_dataReferenced in:
• 2.2. Event message box format and event timing parameters
• 4. Prose description of APIs

#elementdef-eventstreamReferenced in:
• 2.3. MPD Events timing model (2) (3)

#element-attrdef-eventstream-schemeiduriReferenced in:
• 2.3. MPD Events timing model (2)
• 4. Prose description of APIs

#element-attrdef-eventstream-valueReferenced in:
• 2.3. MPD Events timing model (2)

• 4. Prose description of APIs
#element-attrdef-eventstream-timescaleReferenced in:

• 2.3. MPD Events timing model (2) (3) (4)
• 4. Prose description of APIs

#elementdef-eventReferenced in:
• 2.3. MPD Events timing model (2) (3) (4)

#element-attrdef-event-presentationtimeReferenced in:
• 2.3. MPD Events timing model (2)
• 4. Prose description of APIs

#element-attrdef-event-durationReferenced in:
• 2.3. MPD Events timing model (2)
• 4. Prose description of APIs

#element-attrdef-event-idReferenced in:
• 2.3. MPD Events timing model (2)
• 4. Prose description of APIs

#element-attrdef-event-messagedataReferenced in:
• 2.3. MPD Events timing model (2)
• 4. Prose description of APIs

#timed-metadata-track-uriReferenced in:
• 4. Prose description of APIs

#timed-metadata-track-timescaleReferenced in:
• 4. Prose description of APIs

#timed-metadata-sample-presentation-timeReferenced in:
• 4. Prose description of APIs

#timed-metadata-sample-durationReferenced in:
• 4. Prose description of APIs

#timed-metadata-sample-data-in-mdatReferenced in:
• 4. Prose description of APIs

#on-receiveReferenced in:
• 1. DASH player architecture for processing DASH events and timed metadata

tracks
• 3.1.3. On-receive processing
• 4. Prose description of APIs

#on-startReferenced in:

• 1. DASH player architecture for processing DASH events and timed metadata
tracks

• 3.1.4. On-start processing
• 4. Prose description of APIs

#active-event-tableReferenced in:
• 3.1.1. Prerequisite
• 3.1.4. On-start processing (2)

