3GPP TSG-SA4 Meeting #103
S4-190400
Newport Beach, USA, 8 – 12 April 2019

Agenda item:
10.4
Source:
InterDigital Communications, Inc.
Title:
On Recommended Viewport Metadata
Document for
Agreement
1 Introduction
Omnidirectional video is captured by a set of cameras or a camera with multiple lenses and sensors. The multiple captured pictures are stitched to form a omnidirectional picture. The picture is then possibly rotated and mapped on to a 2D plane using equirectangular (ERP) or cube-map projection. Additional frame packing and region-wise packing may be applied to pack the projected image onto a packed picture.
On the client side, the reverse processing is carried out to extract the region from the 2D projected/packed picture and map it to the unit sphere surface. The spherical region is then mapped and rendered on the 2D viewport. The viewport rendering format may include rectilinear projection, little planet (or tiny planet) projection, fisheye projection, and etc.

The human eye perceives its surroundings with incrediable clarity, depth and a wide field of view. To put in perspective with technicality, the human eye can perceive a field view of up to 180 degrees without even moving the eyeballs. Even more, the eyes can see up to a 270-degree field of view, given the eye are fully rotated. By creating a wide field of view, VR headsets can offer great immersion and depth of view to every content it renders to the user. Table 1 lists FOV value of HMDs.

Table 1 Chart of FoV (Field of View) of HMDs
	HMD
	FOV
	HMD
	FOV
	HMD
	FOV

	StarVR/iMAX
	210
	GearVR
	100
	Zeiss One VR
	100

	Oculus Rift
	110
	PlayStation VR
	100
	Razer OSVR
	100

	HTC Vive
	110
	Google Cardboard
	90
	Pimax 8K VR
	200

	LG Valve
	110
	HoloLens
	90-110
	Magic Leap One
	40/30

2 Projection

When omnidirectional video is consumed by a head-mounted display (HMD) such as Oculus Rift or Gear VR, only the parts of the video, known as viewport, that corresponds to the user’s viewing orientation, are rendered. The original captured omnidirectional image or video is first stitched and projected to 2D source plane to form a rectangular picture for video compression. The common source projection formats include Equirectangular projection (ERP) and Cube-map projection format. When a viewport is rendered to the display, the viewport is generated from source plane using rendering projection methods such as rectilinear projection or little planet projection.

[image: image1.emf]A

O

B

C

D

P

X

Z

Y

u

v

Figure 1 Viewport generation with rectilinear projection
Figure 1 illustrates a viewport generated by rectilinear projection. Viewport generation performed in JVET 360Lib [1] assumes that the viewing angle is along the Z axis. Here we briefly describe the rectilinear projection process.

The first step is to map a viewport sample position to the 3D (X, Y, Z) coordinates based on rectilinear projection. Denote the viewport picture ABCD’s width as WVP and its height as HVP. Denote the FOV size of the viewport as (Fh x Fv), where Fh is the horizontal FOV angle and Fv is the vertical FOV angle. In order to arrange all sampling points in a symmetric manner in both directions, there is a shift between the origin of (u, v) coordinates and the origin of (m, n) coordinates, as shown in Figure 2.
[image: image2.emf]

θ =90

θ =-90

θ =0

ϕ=-180

ϕ=0 ϕ=180

u

v

m

n

Figure 2. Sampling coordinate definition in (u, v) plane in 360Lib
For 2D-to-3D coordinate conversion, we first start from a given sampling position (mv, nv) on viewport ABCD, and calculate (u, v) using (1)

 REF _Ref516666294 \h
(2)
	u = (mv+0.5)*2*tan(Fh/2)/WVP
	(1)

	v = (nv+0.5)*2*tan(Fv/2)/HVP
	(2)

Then, the 3D coordinates (x, y, z) corresponding to (u, v) is calculated as:

	x = u − tan(Fh/2)
	(3)

	y = −v + tan(Fv/2)
	(4)

	z = 1.0
	(5)

Projecting the point (x, y, z) onto the 3D coordinates (X, Y, Z) on the unit sphere, we have:

	X = x/[image: image4.png]J(x2 + y2 + z2)

	(6)

	Y = y/[image: image6.png]J(x2 + y2 + z2)

	(7)

	Z = 1.0 /[image: image8.png]J(x2 + y2 + z2)

	(8)

[image: image9.emf]

L0

L1

L2 L3 L5

L6

A1

A2

A4

A5

L4

A3

A0

A6

θ

P

X

Z

Y

ϕ

Figure 3. 3D XYZ coordinate example

The second step is to map 3D coordinates (X, Y, Z) to 2D source plane sampling point (ms, ns). Without loss of generality, we assume the source plane is in ERP format. Assume the 3D sphere is sampled with longitude (ϕ) and latitude (θ). The longitude ϕ is in the range [−π, π], and latitude θ is in the range [−π/2, π/2], where π is the ratio of a circle's circumference to its diameter. The longitude ϕ is defined by the angle starting from X axis in counter-clockwise direction as shown in Figure 3. The longitude and latitude (ϕ, θ) can be evaluated from (X, Y, Z) coordinates using (9)

 REF _Ref463440467 \h * MERGEFORMAT
(10).
	ϕ = tan−1(−Z/X)
	(9)

	θ = sin−1(Y/(X2+Y2+Z2)1/2)
	(10)

Then the uv plane position (u, v) can be calculated from (ϕ, θ) using (11)

 REF _Ref516666845 \h
(12):

	u = 0.5 + ϕ/(2*π)
	(11)

	v = 0.5 - (θ/π)
	(12)

	and position on the ERP plane (ms, ns) can be calculated from (13)

 REF _Ref516667527 \h
(14) where W and H are the width and height of the ERP image or video frame:

	ms = u*W – 0.5
	(13)

	ns = v*H – 0.5
	(14)

Finally, the sample value at (ms, ns) is calculated by interpolating from neighboring samples at integer positions on the source ERP plane, and the interpolated sample value is placed at (mv, nv) in the viewport.

Figure 4 illustrates the above viewport generation process between the sample of the 2D viewport and the sample of the source projection plane such as 2D ERP frame. It starts from a sample position (mv, nv) on the 2D viewport, first finds the corresponding 3D (X, Y, Z) coordinates on the 3D sphere (step 1), then finds the corresponding 2D coordinates (ms, ns) in the source 2D ERP plane (step 2), and finally takes the corresponding viewport sample value at the corresponding position of 2D ERP plane (step 3).
[image: image10.png]2D ERP plane 3D Sphere 2D viewport plane

Figure 4 viewport generation example

Different rendering format may present different viewing experience within a field of view (FOV) range. Figure 5 and Figure 6 show an omnidirectional video frame rendered in 3 different rendering format, rectilinear, little planet and fisheye format, at FOV 160° and 90° respectively. As shown in the figure, rectilinear works well at FOV 90°, but the stretch effect is obvious at FOV 160°. The little planet or fisheye format may not work well at FOV 90°, but may present a reasonable rendering experience at a higher FOV degree.
[image: image11.png]

 [image: image12.png]

Rectilinear rendering

[image: image13.png]

 [image: image14.png]

Little planet rendering

[image: image15.png]

 [image: image16.png]

fisheye rendering

Figure 5 Example of different rendering format at FOV 160°

[image: image17.png]=

 [image: image18.png]

rectilinear rendering

[image: image19.png]

 [image: image20.png]

little planet rendering

[image: image21.png]

 [image: image22.png]8 |

L"K l‘r\-‘m- %Tl‘

3

fisheye rendering

Figure 6 Example of different rendering format at FOV 90°

We propose to update the recommended viewport metadata (section 7.1.2 26.118) to indicate the preferred 3D to 2D projection format for a range of FOV values. The content producer or director may use this to guide the rendering operation of the VR player.

3 Recommended Viewport Metadata
The recommended viewport timed metadata track indicates the viewport that should be displayed when the user does not have control of the viewing orientation or has released control of the viewing orientation.

In order to express preferred rendering operation for the video track, an extension to the RcvpSampleEntry()may be used as follows:
class RcvpSampleEntry() extends SphereRegionSampleEntry('rcvp') { // Same as in OMAF

RcvpInfoBox(); // mandatory
}

class RcvpInfoBox extends FullBox('rvif', version, 0) { //Yellow-highlights are changes compared to the syntax of this box in OMAF

unsigned int(8) viewport_type;

string viewport_description;

if(version > 0)

unsigned int(8) preferred_rendering_operation;
}

Table 7.1 – Preferred rendering operation

	preferred_rendering_operation
	Preferred Rendering Operation

	0
	Preference unspecified

	1
	Render the entire recommended viewport and additional adjacent regions to fill entire screen

	2
	Render the entire recommended viewport and fill the remaining parts of the screen with a letter box (black pixels)

	3
	Use the display window to render only recommended viewport information and crop the recommended viewport to fit the display window

	4-255
	reserved

Additional preferred rendering projection is proposed to the RcvpInfoBox for high FoV as follows.
class RcvpInfoBox extends FullBox('rvif', version, 0) { //Yellow-highlights are changes compared to the syntax of this box in OMAF

unsigned int(8) viewport_type;

string viewport_description;

if(version > 0)

unsigned int(8) preferred_rendering_operation;

unsigned int(8) preferred_rendering_projection;
}

Table 7.2 – Preferred rendering projection

	Value
	Description

	0
	Preference unspecified

	1
	Rectilinear projection

	2
	Little planet projection

	3
	fisheye projection

	4..255
	reserved

4 Reference

[1] ITU-T SG16/WP3/JVET-H1004, “Algorithm descriptions of projection format conversion and video quality metrics in 360Lib Version 5,” Oct. 2017
- 1/2 -

