Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG-SA4 Meeting 103
S4-190334
8 – 12 April 2019, Newport Beach, CA, United States

Agenda item:
10.6
Source:
Qualcomm Incorporated
Title:
FS_XR5G: Architectures
Document for
Agreement

1 Introduction
The objective of this Study Item of FS_XR5G is to investigate the relevance of Augmented and Extended Reality in the context of 3GPP by:

· Analysing the different technologies and equipment in place that provide an Extended Reality experiences.

· Collecting the associated use cases and identifying the 3GPP service(s) they map to

· Analysing and identifying the media formats (including audio and video), metadata, accessibility features, interfaces and delivery procedures between client and server required to offer such an experience

· Identifying relevant client and network architectures and APIs that support XR use cases

· Identifying relevant QoS service parameters and other core network and radio functionalities that would be required or at least beneficial for XR use cases
· Collecting key performance indicators for relevant XR services and the applied technology components.

· Possibly conducting subjective tests so as to estimate the audio and video formats and encoding parameters required for ensuring the quality of experience as considered necessary

· Studying the processing requirements (both audio and video) and associated issues such as spatial resolutions, frame rate, latency and accuracy of field of “view” rotation

· Collecting information on market and standardization status and communication with relevant 3GPP groups and external organizations

· Drawing conclusions on the potential needs for standardization in 3GPP.
This document proposes updates on client and network architectures.
2 Proposed Updates
5.9
XR Architectures

5.9.1
Introduction

This clause documents different architectures that may be of relevance for XR Service. Both, device and network architectures are considered.

The architectures are expected to be refined and mapped to 3GPP 5G architectures.

5.9.2
Architecture Components

5.9.2.1
Introduction

In order to structure the work, architectural components are defined. We separate device architectures as well as network architectures.

5.9.2.2
Network Components

Control and Management Function: A function that establishes the communication between an XR client and a XR network element, or multiple of those.

XR Content Origin: A server (may be centralized or distributed) that hosts XR Experiences that can be accessed with 3GPP-defined protocols.

XR Media Aware/Processing Network Function: A function that communicates with either XR Content Origin or the XR client or both in order to support the XR client in experiencing the immersive scene.

XR Client: A function that provides all means to consume XR Experiences.

2.2.1.1 5.9.2.3
XR Client Functions
· Connectivity (5G)
· Content Delivery Protocol

· Media Access Client
· Uplink Client

· Uplink Media

· Uplink Metadata

· Security Client

· Media Decoders

· Audio

· Video

· Application/Presentation Engine

· Scene Handling

· Game Engine
· XR Rendering Functions

· Audio

· Visual

· XR Control Functions

· XR Input: Buttons, Sticks, Triggers, Tracking

· XR Display

· XR Compositor
· XR Tracking

· Capture:

· Microphones

· Camera

· Others
2.2.1.2 5.9.2.4
XR Functions in Network
· Connectivity (5G)
· Content Delivery Protocol

· Media Access Client
· Media Encoders

· Audio

· Video

· Application/Presentation Engine

· Scene Handling

· Game Engine
· XR Rendering Functions

· Audio

· Visual

· XR Control Functions

· XR Input: Buttons, Sticks, Triggers, Tracking

· XR Display

· XR Compositor
· XR Tracking

· XR Processing Functions

5.9.3
Rendering Architectures

5.9.3.1
Device rendering

The figure shows that all rendering is done in the device.

[image: image15.png]XR
Edge Server

Game Engine

renders to GPU

Rendered Frames

Video
Encoder

Compressed Rendered Frame

Low Latency

Transport

Compressed Rendered
Frame Video Stream

HMD

F
Tracking

Rendered Frames

Compressed Rendered

Frame

Viewport directly
rendered

Video Decoder

Low Latency

Transport

5.9.3.2
Network Rendering: Viewport rendering in Edge

In a architecture as shown in Figure 12 below, the viewport is entirely rendered in an edge server. The edge server runs the graphics processing, for example a game engine. The game engine renders the viewport based on the pose provided from the HMD ("flattening"). The pose is delivered over a network. that is encoded and transported over the network. At the HMD, the media decoders decode the media and the viewport is directly rendered.

[image: image2]
Figure 1 Viewport rendering in Edge

The following call flow highlights the key steps:
1. An HMD connects to the network and joins rendering application
a. Sends static device information (supported decoders, viewport)
2. Based on this information, network server sets up encoder and formats
a. Loop
b. HMD collects pose (or a predicted pose)
c. Pose is sent to XR Edge Server
d. The XR Edge Server uses the pose to generate/compose the viewport
e. Viewport is encoded with regular media encoders

f. The compressed video is sent to HMD
g. The HMD decompresses video and directly renders viewport
Such an architecture enables simple clients, but has significantly challenges on compression and transport to fulfill the latency requirements. In addition, the formats exported from Game engines needs to be supported by the respective media encoders.
5.9.3.3
Split Rendering: Viewport rendering in Time Warp in device

In Figure 2, the viewport is pre-dominantly rendered in the XR edge server, but the device is able to do time-warping to address local correction.

· VR graphics workload split into rendering workload on powerful XR server and TW on device

· Low motion-to-photon latency preserved via on device Asynchronuous Time Warping (ATW)

[image: image4]
Figure 2 Split Rendering with Time Warp Correction

The following call flow highlights the key steps:
1. An HMD connects to the network and joins rendering application
a. Sends static device information (supported decoders, viewport)
2. Based on this information, network server sets up encoder and formats
a. Loop
b. HMD collects pose (or a predicted pose)
c. Pose is sent to XR Edge Server
d. The XR Edge Server uses the pose to generate/compose the viewport
e. Viewport is encoded with regular media encoders

f. The compressed mideo is sent to HMD
g. The HMD decompresses video
h. An improved prediction is used for local rendering improvements such as asynchronous time warping and possible depth correction.
Such an architecture reduces the requirements on the latency compared to the architecture above.
5.9.3.4
Generalized Split Rendering
In Figure 12, an architecture is shown for which the edge server converts the 3D scene into a simpler format to be processed by the device (e.g. it may provide additional metadata that is delivered with the pre-rendered version). The device recovers the baked media and does the final rendering based on local correction on the actual pose.

· VR graphics workload split into rendering workload on powerful XR server and simpler rendering on the device

· This approach enables to relax the latency requirements to maintain a full immersive experience as time-critical adjustment to the correct pose is done in the device.
[image: image6.emf]

6-DOF
TrackingPresentation

Engine

2D/3D
Media Encoders

Low Latency
Transport

Presentation Engine

Compressed
Media and Metadata

Streams

XR
Edge Server

HMD

HMD Pose

Network
Connection

Low Latency
Transport

Media
Decoders

Simplified
Scene

Description and
Metadata

Projected
Frames

Metadata

Rendered
Viewport

6-DOF

Tracking

Presentation

Engine

2D/3D

Media Encoders

Low Latency

Transport

Presentation Engine

Compressed

Media and Metadata

Streams

XR

Edge Server

HMD

HMD Pose

Network

Connection

Low Latency

Transport

Media

Decoders

Simplified

Scene

Description and

Metadata

Projected

Frames

Metadata

Rendered

Viewport

Figure 3 Split Rendering with Reprojection in Device

Such an approach needs careful considerations on the formats of projected frames and their compression with video decoders. Also important is distribution of latencies to different components of the system. More details and breakdown of the architectures is necessary. The interfaces in the device however are aligned with the general structure defined above.

·
·

5.9.3.5
Conversational architecture

tbd
3 Proposal

It is proposed to
· Updates the architectures
· Progress the architectures in telcos, especially mapping to the use cases

· At the next meeting, integrate the architectures into the Technical Report[image: image8.png]

[image: image9.jpg]

- 4/4 -

[image: image1][image: image10.png]XR
Edge Server

Game Engine

renders to GPU

Rendered Media

Media
Encoders

Compressed Rendered Media

w Latency
Transport

/

’
'
'
'
'
'
'

'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
v

5G Connectio

HMD Pose

Compressed Rendered
Media Stream

——)

HMD

Rendered Media

Compressed Rendered

Media

GPU
(Time Warping)

Media
Decoders

Low Latency

Transport

[image: image11.png]XR /" 5G Connectio HMD

Edge Server i

HMD Pose

Viewport
Rendered Directly

Game Engine

renders to GPU

Rendered Media Rendered Media

Media
Encoders

Media
Decoders

Compressed Rendered
Media Stream

——)

Compressed Rendered
Media

Compressed Rendered Media

w Latency
Transport

Low Latency

'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
v

Transport

[image: image12.png]i-s interface
Media Resource References

Timing Information
Spatial Information (e.g. Viewport)
Media consumption information

XR Inputs/Capabilities i-m interface

Sync Information
Shader Information

i BN

ISync Rendering

[image: image13.png]XR
Edge Server

Game
Engine

3D Objects

3D Video

Encoder
Compressed

3D Objects
Low Latency

Transport

!
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
i

/

" BG Connection

HMD Pose

<

Compressed
3D Video Stream

—)

N
\

HMD

GPU
(Rendering
+Warping)

6-DOF

Tracking

3D Objects

Video
Decoder

Compressed 3D

Low Latency

Transport

[image: image14.png]XR
Edge Server

Game Engine

renders to GPU

Rendered Frames

Video
Encoder

Compressed Rendered Frame

Low Latency

Transport

Compressed Rendered
Frame Video Stream

HMD

F
Tracking

Rendered Frames

Compressed Rendered

Frame

GPU
(Time Warping)

Video Decoder

Low Latency

Transport

