ETSI SMG11

Kyoto, Japan 6-10 December 1999

Title: ETSI/AMR NS Selection Experiment 1 - COMSAT Results

Source*: COMSAT Laboratories

Summary

This document presents a summary for ETSI Adaptive Multi Rate (AMR) Noise Selection (NS) Selection Phase Experiment 1 conducted by COMSAT in the Spanish language.

1. Introduction

COMSAT Laboratories in accordance with the AMR NS Selection Phase Experiment 1 performed a listening laboratory evaluation in Spanish. This experiment was designed to identify whether the noise suppression candidate algorithms for the AMR codec operating at 12.2 and 5.9 kbit/s would introduce any artifacts during the initial convergence time for noisy and quiet background. The test design is defined in Section 7 of the AMR NS Selection Subjective Test Plan [1], which used speech material processed under selected experimental conditions from Experiments 2, 4, and 5.

COMSAT performed Experiment 1 using a subset of the Spanish speech material available in the NTT Speech Database. Six subjects fluent in the Spanish language performed as "expert" subjects in the test. The raw data collected was used to derive gender-wise and combined-gender pair comparison scores and standard deviation statistics for each of the three questions posed to the experts.

2. Source Material

Six single-sentence stimuli were selected for two male and two female talkers from the NTT Speech Database. The source material was provided to COMSAT, the designated Host Laboratory, which was responsible for all pre- and post-processing according to the test plan in [2].

3. Experimental Design

The test design followed the specification in the AMR NS Selection Test Plan, as summarized in Tables 1 and 2.

4. Processed Material

The host laboratory provided a CDROM with 960 processed speech files, which corresponds to the processing of 5 files per talker through 96 reference conditions and 96 test conditions. Speech processing details are given in [3]. Test and reference files were concatenated for each condition following the presentation order given in the test plan before presentation to the subjects.

Contact:

Simão F. Campos-Neto COMSAT Labs 22300 COMSAT Drive Clarksburg, MD 20871 USA

Tel: +1-301-428-4516 Fax: +1-301-428-9287 E-mail: simao.campos@comsat.com

Table 1:
Factors and Conditions for Experiment 1: a subset of conditions in Experiments 2, 4, and 5

Main Codec Conditions	#	Notes
Noise Suppresser Candidates	6	
Codec	1	AMR
Codec Modes (FR/HR)	HR	5.9 kbit/s rate
	FR	12.2 kbit/s rate
BER	0	Clear channel, no transmission errors
Input level	1	Nominal (-26dBov)
Acoustic Background Noise	0	• Experiment 2: None
		• Experiments 4A and 5A: Car (6 dB), street (9 dB), and babble (9 dB)
		• Experiments 4B and 5B: Car (12 dB), street (15 dB), and babble (15 dB)
Transcodings	2	Self tandem condition from Experiment 2
Input Characteristic	1	GSM Filtered
Codec references	#	Notes
Test vocoders	1	AMR with NS
Reference vocoder	2	AMR@12.2, AMR@5.9
Other references None	#	Notes
Common Conditions	#	Notes
GSM Channel	0	NO channel model
Number of talkers	4	2 male + 2 female
Number of speech samples	52	6/talker in split-plot mode
Sentences/sample	1	Single sentence stimuli with 2-second silence or noise preamble
Listening Level	1	-18dBPa (76dB SPL) at ERP, binaural
Listeners	6	Expert listeners
Listening instrument		AKG K240DF Studio Monitor Headphone
Randomizations	6	1 expert at a time
Rating Scale	1	Comparison of processed and reference stimuli according to special instructions (Section 7.7 of the test plan).

5. Listening Sessions

COMSAT performed Experiment 1 according to the Test Plan.

5.1 Presentation Sequence Material

COMSAT used the randomization sequences specified in the AMR NS Selection Test Plan for Experiment 1.

5.2 Listeners

The subjective assessment was performed using Six "expert" subjects fluent in the Spanish language. The listener selection criteria were compliant with the AMR NS Selection Test Plan. The pre-test listener orientation used by COMSAT conformed to that specified in the Test Plan.

5.3 Audio Presentation

The processed speech material was presented to the subjects in listening stations contained within an acoustically conditioned sound room meeting the requirements for an NC 20 acoustic facility. Presentation was made binaurally using an AKG Studio Monitor headset, driven by a distribution amplifier set to deliver an active level of -18 dBPa (76 dB SPL) in each ear, using a B&K 4153 Artificial Ear with circumaural headphone adapter, 4134 Microphone element and 2610 Measurement Amplifier.

Noise (dB)
Car 6
Car 6
Car 6
Car 6
Car 6
Street 9
Babble
Babble
Babble 9
Babble 9
Babble 9
Babble 9
Car 1
Car 1
Car 1
Car 12
Car 1
Car 1
Street 15
Street 15
Street
Street
Street
Street
Babble
Car
Car
Car
Car 1
Car
Car 12
Street

I Cond.No. 10000 1000 10000 <	Cond.No	Original	Noico	SNR	Deference	Drocecod	Tandame
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Exp. 1	Cond.No.	DETON	(dB)		n raccona t t	T AILUCIUS
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	49	5A/27	Babble	15	AMR@12.2	AMR@12.2/NS1	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	50	5A/28	Babble	15	AMR @ 12.2	AMR@12.2/NS2	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	51	5A/29	Babble	15		AMR@12.2/NS3	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	52	5A/30	Babble	15		AMR@12.2/NS4	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	53	5A/31	Babble	15		AMR@12.2/NS5	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	54	5A/32	Babble	15	AMR@12.2	AMR@12.2/NS6	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	55	5B/15	Car	12	AMR@12.2	AMR@12.2/NS1	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	56	5B/16	Car	12	AMR @ 12.2	AMR@12.2/NS2	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	57	5B/17	Car	12		ci	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	58	5B/18	Car	12	AMR@12.2	AMR@12.2/NS4	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	59	5B/19	Car	12		AMR@12.2/NS5	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	60	5B/20	Car	12		AMR@12.2/NS6	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	61	5B/21	Street	15		AMR@12.2/NS1	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	62	5B/22	Street	15	AMR@12.2	AMR@12.2/NS2	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	63	5B/23	Street	15	AMR@12.2	AMR@12.2/NS3	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	64	5B/24	Street	15	AMR @ 12.2	AMR@12.2/NS4	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	65	5B/25	Street	15	AMR @ 12.2	AMR@12.2/NS5	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	66	5B/26	Street	15	AMR@12.2	AMR@12.2/NS6	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	67	5B/27	Babble	15	AMR@12.2	AMR@12.2/NS1	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	68	5B/28	Babble	15	AMR@12.2	AMR@12.2/NS2	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	69	5B/29	Babble	15	AMR@12.2	AMR@12.2/NS3	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	70	5B/30	Babble	15	AMR@12.2	AMR@12.2/NS4	1
5B/32 Babble 15 2A/05 2A/06 2A/07 2A/08 2A/09 2A/10 2A/17 2A/19 2A/13 2A/14 2A/15 2A/16 2A/15 2A/16 2A/16 2A/16 2A/16 2A/16 2A/16 2A/27	71	5B/31	Babble	15		AMR@12.2/NS5	1
2A/05	72	5B/32	Babble	15		AMR@12.2/NS6	1
2A/06 2A/07	73	2A/05				AMR@12.2/NS1	1
2A/07 2A/08 2A/08 - 2A/09 - 2A/17 - 2A/19 - 2A/19 - 2A/17 - 2A/18 - 2A/19 - 2A/19 - 2A/19 - 2A/11 - 2A/12 - 2A/11 - 2A/11 - 2A/11 - 2A/12 - 2A/13 - 2A/14 - 2A/15 - 2A/16 - 2A/15 - 2A/16 - 2A/26 - 2A/26 - 2A/27 - 2A/28 - 2A/29 - 2A/29	74	2A/06				AMR@12.2/NS2	1
2A/08 2A/09 2A/10 2A/19 2A/19 <t< td=""><td>75</td><td>2A/07</td><td> </td><td> </td><td>AMR @ 12.2</td><td>AMR@12.2/NS3</td><td>1</td></t<>	75	2A/07			AMR @ 12.2	AMR@12.2/NS3	1
2A/09 - - 2A/10 - - - 2A/10 - - - - 2A/10 - - - - - 2A/17 - - - - - - - 2A/19 - </td <td>76</td> <td>2A/08</td> <td> </td> <td> </td> <td>AMR @ 12.2</td> <td>AMR@12.2/NS4</td> <td>1</td>	76	2A/08			AMR @ 12.2	AMR@12.2/NS4	1
2A/10 2A/17 - 2A/17 - - - - 2A/17 - - - - - 2A/18 - - - - - - 2A/19 - - - - - - - - 2A/19 - <td>LL</td> <td>2A/09</td> <td> </td> <td> </td> <td>AMR@12.2</td> <td>AMR@12.2/NS5</td> <td>1</td>	LL	2A/09			AMR@12.2	AMR@12.2/NS5	1
2A17	78	2A/10			AMR@12.2	AMR@12.2/NS6	1
2A/18	79	2A/17			AMR@5.9	AMR@5.9/NS1	1
2A/19	80	2A/18			AMR @ 5.9	AMR@5.9/NS2	1
2A/20	81	2A/19			AMR@5.9	AMR@5.9/NS3	1
2A21 2A21 2A11 2A12 2A13 2A13 2A14 - 2A15 - 2A15 - 2A13 - 2A14 - 2A15 - 2A16 - - - 2A13 - 2A14 - - - - - - </td <td>82</td> <td>2A/20</td> <td> </td> <td> </td> <td>AMR@5.9</td> <td>AMR@5.9/NS4</td> <td>1</td>	82	2A/20			AMR@5.9	AMR@5.9/NS4	1
2A/22 2A/11 2A/12 2A/13 2A/13 2A/13 2A/13 2A/14 2A/15 2A/14 2A/15 2A/23 2A/25 2A/25 2A/27 2A/27 2A/27 2A/27 2A/27 2A/27 2A/27 2A/27 2A/27 2A/27 2A/27 2A/24 2A/14 2A/14 2A/15 2A/15 2A/15 2A/15 2A/15 2A/16 2A/16 2A/16 2A/16 2A/17 2A/16 2A/17 2A/16 2A/16 2A/16 2A/16 2A/17 2A/16 2A/17 2A/17 2A/16 2A/16 2A/17 2A/16 2A/17 2A/17 2A/16 2A/17	83	2A/21			AMR@5.9	AMR@5.9/NS5	1
2A/11 = 2A/12 =	84	2A/22			AMR@5.9	AMR@5.9/NS6	1
2A/12	85	2A/11			AMR@12.2	AMR@12.2/NS1	2
2A/13 - - 2A/14 - - 2A/15 - - 2A/16 - - 2A/16 - - 2A/16 - - 2A/16 - - 2A/23 - - 2A/25 - - 2A/26 - - 2A/27 - -	86	2A/12			AMR@12.2	AMR@12.2/NS2	2
2A/14 / 2A/15 / 2A/16 / 2A/16 / 2A/23 / 2A/24 2A/25 2A/26 2A/27	87	2A/13			AMR@12.2	AMR@12.2/NS3	2
2A15 - 2A16 - 2A16 - 2A23 - 2A24 2A25 2A26 2A26 2A27	88	2A/14			AMR@12.2	AMR@12.2/NS4	2
2A/16	89	2A/15			AMR@12.2	AMR@12.2/NS5	2
2A/23	90	2A/16			AMR@12.2	AMR@12.2/NS6	2
2A/24	91	2A/23			AMR@5.9	AMR@5.9/NS1	2
2A/25	92	2A/24			AMR@5.9	AMR@5.9/NS2	2
2A/26	93	2A/25			AMR@5.9	AMR@5.9/NS3	7
2A/27 — — — —	94	2A/26			AMR@5.9	AMR@5.9/NS4	2
	95	2A/27			AMR @ 5.9	AMR@5.9/NS5	2
07/H7	96	2A/28			AMR@5.9	AMR@5.9/NS6	2

The processed speech files were stored within the main facility computer and presented to the listeners under program control as 16 kHz samples. The signals were passed through a 16-bit D/A converter coupled to the input of the distribution amplifier. The reference and test signals were available to the subjects via an A/B switch box, where the P position corresponded to the Processed signal and the R position corresponded to the Reference signal. The subjects were free to switch between the P and R position as many times as they wanted, before casting a vote for each of the three conditions. On average, each of the subjects took 2 hours to perform the test.

5.4 Scoring

The test plan specified that subjects would respond to three questions about each sample. These questions were designed to target the convergence behavior of the noise suppressors and to identify the presence of artifacts in the sample. Subjects were instructed to compare the test and reference samples to determine whether an audible artifact was present in the original sample or added by the noise suppressor. Where artifacts were identified, the subjects are asked to provide a short description.

The questions were:

A. Assess the convergence of the noise suppression.

- 1. Not audible
- 2. Audible, but fast
- 3. Audible and relatively slow
- B. Assess the presence of artifacts during the silence at the beginning of the sample:
 - 1. No audible artifacts
 - 2. Audible
 - 3. Clearly audible
- C. Assess the presence of artifacts at the onset of the speech and during the speech:
 - 1. No audible artifacts
 - 2. Audible
 - 3. Clearly audible

The responses to these assessment questions yielded quantitative estimates of the number and severity of artifacts heard, as well as a description of those artifacts (see Annex A).

The listener responses were registered on paper for each of the questions and for each of the 96 test conditions after they listened to the processed and reference material to their satisfaction. The scores were later entered into a database for subsequent analysis and presentation.

6. Statistical Analysis

The statistics to be reported for this expert experiment are the average of scores for each of the three questions asked to the subjects. However, since the population sample is too small, standard deviation values are not useful.

The overall figures for each noise suppression candidate are presented in Table 3. In Table 3(a) the percentage of 2 and 3 votes for the NS candidates is presented for each noise type, while Table 3(b) presents the grand mean of the votes for each question for the NS candidates and the overall percentage of votes 2 and 3.

Table 4 presents the basic statistical analysis data produced by COMSAT for AMR NS Selection Experiment 1, and is sorted in test condition order. Each test condition received a total of 6 votes. In the table, *Cond* represents the test condition number in Experiment 1, *SNR/Tandem* is the circuit impairment, *Yconv*, *Ysil*, and *Ysp* are the mean scores for the convergence question A, for the artifacts in silence question B, and for the artifacts in speech question C, respectively. *Sdconv*, *SDsil*, and *SDsp* are the standard deviation for Questions A, B, and C, respectively. The Table also presents the histogram of votes for Questions A (*Convergence*), B (*Silence*), and C (*Speech*)

Table 5 is an alternative presentation of the data in Table 4, whereby the data is grouped by Noise Suppressor and sorted by increasing *Yconv* and *Ysil*.

		(a) I CICC	mage of	voles 2 al		JOWISH	L LAPCIII		Samzeu o	y noise t	ype	
		Babble			Car			Street			Quiet	
NS	Yconv	Ysil	Ysp	Yconv	Ysil	Ysp	Yconv	Ysil	Ysp	Yconv	Ysil	Ysp
1	4%	17%	33%	46%	58%	54%	21%	25%	33%	0%	0%	33%
2	13%	13%	25%	100%	96%	67%	67%	67%	21%	29%	29%	21%
3	8%	17%	8%	63%	71%	54%	33%	38%	21%	13%	13%	38%
4	8%	8%	13%	100%	100%	71%	50%	50%	38%	4%	4%	29%
5	21%	38%	21%	100%	100%	63%	54%	54%	25%	13%	13%	33%
6	17%	17%	29%	67%	79%	79%	25%	33%	38%	8%	8%	21%

 Table 3

 (a) Percentage of votes 2 and 3 for COMSAT Experiment 1 organized by noise type

(b) Grand means and percentage of 2&3 votes for COMSAT Experiment 1 for all noise backgrounds confounded

	Gr	and-mea	ans	Percen	tage 2&	3 votes
NS	Yconv	Ysil	Ysp	Yconv	Ysil	Ysp
1	1.3	1.3	1.5	18%	25%	39%
2	1.6	1.6	1.4	52%	51%	33%
3	1.4	1.4	1.4	29%	34%	30%
4	1.5	1.5	1.5	41%	41%	38%
5	1.8	1.6	1.4	47%	51%	35%
6	1.4	1.4	1.5	29%	34%	42%

It can be seen from Tables 4 and 5 that in general the car noise conditions had the largest number of perceived effects. On the other end, babble and quiet background were the conditions that elicited the least comments. Similarly, the grand-means for each NS algorithm, computed across the 16 impairments, indicate no major difference across the algorithms. However, the proportion of votes 2 and 3 showed a large variance for the different NS candidates, which slightly contradicts the indications of the grand means. When one looks into the scores by noise type, car noise represents the conditions with most noticeable convergence effects.

7. Conclusion

COMSAT performed AMR NS Selection Experiment 1 for the Spanish language in compliance with the test plan. Six expert subjects were used. This experiment was designed to determine any initial convergence artifacts introduced by the noise suppression candidate algorithms for the AMR codec operating at 12.2 and 5.9 kbit/s. It was observed that in general the car noise conditions had the largest number of perceived effects. On the other end, babble and quiet background conditions elicited the least comments. The grand-means for each NS algorithm, computed across the 16 test impairments, indicate no major difference across the algorithms. However, the proportion of votes 2 and 3 showed a large variance for the different NS candidates, which slightly contradicts the indications of the grand means.

References

- [1] SMG11SQ, "Test Plan for the AMR Specification for the AMR-NS Selection Phase"; Tdoc SMG11 288/99.
- [2] SMG11SQ, "Processing Functions for the GSM AMR Noise Suppression Selection Tests"; Tdoc SMG11 281R/99
- [3] COMSAT Laboratories, "Host Laboratory Processing for ETSI/AMR Noise Suppression Selection Tests", Tdoc SMG11 417/99

													Hist	Histograms	ns		
										Con	Convergence	ıce	Si	Silence		SI	Speech
Noise/Tandem Processed Reference N		N		Yconv	Sdconv	\mathbf{Y} sil	Sdsil	Ysp	SDsp	1	2	3	1	2	3	1	2
Car@6dB/1x AMR@5.9/NS1 AMR@5.9 6		9	_	1.5	0.8	1.3	0.5	1.5	0.5	4	1	1	4	2	0	3	3
AMR@5.9/NS2		9		2.2	0.4	2.5	0.8	1.8	0.8	0	5	1	1	1	4	2	3
Car@6dB/1x AMR@5.9/NS3 AMR@5.9 6		9		1.3	0.5	1.3	0.5	2.0	0.9	4	6	0	4	2	0	6	2
Car@6dB/1x AMR@5.9/NS4 AMR@5.9 6		9	_	2.2	0.4	2.5	0.5	2.0	0.9	0	5	1	0	3	3	2	2
Car@6dB/1x AMR@5.9/NS5 AMR@5.9 6		9		2.7	0.5	2.5	0.5	2.0	0.6	0	2	4	0	3	3	1	4
Car@6dB/1x AMR@5.9/NS6 AMR@5.9 6		ę		1.7	0.5	2.0	0.9	2.2	0.8	2	4	0	2	2	2	1	3
AMR@5.9		_	6	1.5	0.5	1.8	0.8	1.7	0.8	3	3	0	2	3	1	3	2
Street@9dB/1x AMR@5.9/NS2 AMR@5.9	AMR@5.9		6	1.7	0.8	1.7	0.8	1.5	0.5	3	2	1	3	2	1	3	3
Street@9dB/1x AMR@5.9/NS3 AMR@5.9	AMR@5.9		6	2.0	0.9	1.8	0.8	1.5	0.8	2	2	2	2	3	1	4	1
Street@9dB/1x AMR@5.9/NS4 AMR@5.9	AMR@5.9		6	1.5	0.5	1.5	0.5	1.3	0.5	3	3	0	3	3	0	4	2
Street@9dB/1x AMR@5.9/NS5 AMR@5.9			6	1.7	0.8	1.5	0.5	1.2	0.4	3	2	1	3	3	0	5	1
Street@9dB/1x AMR@5.9/NS6 AMR@5.9			6	1.2	0.4	1.2	0.4	1.5	0.5	5	1	0	5	1	0	3	3
Babble@9dB/1x AMR@5.9/NS1 AMR@5.9			6	1.0	0.0	1.2	0.4	1.2	0.4	6	0	0	5	1	0	5	1
AMR@5.9/NS2 AMR@5.9			6	1.2	0.4	1.2	0.4	1.3	0.5	5	1	0	5	1	0	4	2
Babble@9dB/1x AMR@5.9/NS3 AMR@5.9 (•	6	1.0	0.0	1.2	0.4	1.2	0.4	9	0	0	5	1	0	5	1
Babble@9dB/1x AMR@5.9/NS4 AMR@5.9	AMR@5.9		9	1.2	0.4	1.2	0.4	1.2	0.4	5	1	0	5	1	0	5	1
Babble@9dB/1x AMR@5.9/NS5 AMR@5.9			6	1.3	0.8	1.3	0.5	1.2	0.4	5	0	1	4	2	0	5	1
Babble@9dB/1x AMR@5.9/NS6 AMR@5.9	AMR@5.9		6	1.0	0.0	1.0	0.0	1.2	0.4	6	0	0	6	0	0	5	1
Car@12dB/1x AMR@5.9/NS1 AMR@5.9	AMR@5.9		6	2.0	1.1	1.8	0.8	1.8	0.8	3	0	3	2	3	1	2	3
Car@12dB/1x AMR@5.9/NS2 AMR@5.9	AMR@5.9		6	2.0	0.0	2.3	0.5	1.7	0.5	0	6	0	0	4	2	2	4
Car@12dB/1x AMR@5.9/NS3 AMR@5.9	AMR@5.9		6	2.0	0.6		0.4	1.5	0.8	1	4	1	0	5	1	4	1
Car@12dB/1x AMR@5.9/NS4 AMR@5.9	AMR@5.9		6	2.5	0.5	2.2	0.4	1.5	0.8	0	3	3	0	5	1	4	1
AMR@5.9/NS5	AMR@5.9		6	2.7	0.5	2.3	0.5	1.7	0.5	0	2	4	0	4	2	2	4
	AMR@5.9		9	2.0	0.9	1.8	0.4	2.0	0.6	2	2	2	1	5	0	1	4
AMR@5.9/NS1	AMR@5.9		9	1.0	0.0	1.0	0.0	1.2	0.4	9	0	0	9	0	0	5	1
Street@15dB/1x AMR@5.9/NS2 AMR@5.9	AMR@5.9		9	1.7	0.5	1.8	0.8	1.0	0.0	2	4	0	2	3	1	6	0
,	AMR@5.9		9	1.2	0.4	1.2	0.4	1.0	0.0	5	1	0	5	1	0	9	0
AMR@5.9/NS4	AMR@5.9		9	1.3	0.5	1.3	0.5	1.2	0.4	4	2	0	4	2	0	5	1
Street@15dB/1x AMR@5.9/NS5 AMR@5.9	AMR@5.9	-	6	1.5	0.5	1.5	0.5	1.5	0.5	3	3	0	3	3	0	3	3
Street@15dB/1x AMR@5.9/NS6 AMR@5.9	AMR@5.9		9	1.0	0.0	1.2	0.4	1.3	0.5	9	0	0	5	1	0	4	2
Babble@15dB/1x AMR@5.9/NS1 AMR@5.9	AMR@5.9		9	1.0	0.0	1.0	0.0	1.7	0.8	9	0	0	9	0	0	ю	2
Babble@15dB/1x AMR@5.9/NS2 AMR@5.9	AMR@5.9		9	1.0	0.0	1.0	0.0	1.3	0.5	9	0	0	9	0	0	4	2
Babble@15dB/1x AMR@5.9/NS3 AMR@5.9	AMR@5.9		9	1.2	0.4	1.2	0.4	1.2	0.4	5	1	0	5	1	0	5	1
Babble@15dB/1x AMR@5.9/NS4 AMR@5.9	AMR@5.9		6	1.0	0.0	1.0	0.0	1.0	0.0	6	0	0	6	0	0	6	0
AMR@5.9/NS5	AMR@5.9		9	1.3	0.8	1.3	0.5	1.3	0.8	5	0	1	4	2	0	5	0
Babble@15dB/1x AMR@5.9/NS6 AMR@5.9	AMR@5.9		9	1.3	0.5	1.3	0.5	1.5	0.5	4	2	0	4	2	0	ю	3

Table 4 (Part 1/3):Experiment 1: Artifacts in initial convergence

Page 6/15

		3	1	1	1	2	1	ω	0	0	1	0	0	1	0	0	0	0	0	0	1	5	1	5	1	2	0	0	0	1	0	0	0	0	0	0	0
	Speech	2	5	4	3	4	3	33					0 (3 (2 (5		5	33			-	-			2 (2 (-	0	0	2 (
	Spe	7		4						-		4						0	1					(1)		-	-	-	1				-				
		1	3	1	2	0	2	0	3	5	4	2	9	4	3	4	9	9	5	4	3	3	3	1	4	3	5	5	5	4	4	4	5	9	9	4	4
rams	ice	3	2	2	1	2	2	0	0	1	0	1	0	1	0	0	0	0	0	0	1	1	1	2	1	0	0	0	0	2	0	0	0	0	0	0	0
Histograms	Silence	2	2	4	3	4	4	5	2	4	2	3	4	2	2	1	1	1	2	0	3	5	4	4	5	5	0	4	2	1	3	3	1	1	1	0	3
I		1	2	0	2	0	0	1	4	1	4	2	2	3	4	5	5	5	4	9	2	0	1	0	0	1	9	2	4	3	3	3	5	5	5	9	٤
	gence	3	3	0	2	3	5	1	1	0	0	0	2	2	0	0	0	0	1	0	2	1	1	1	2	1	0	0	0	2	2	0	0	0	0	0	ć
	Convergence	2	0	9	1	3	1	З	1	5	1	4	2	1	1	1	1	1	0	0	1	5	4	5	4	3	0	4	2	1	1	2	0	1	0	0	0
	Ŭ	1	3	0	3	0	0	1	4	1	5	2	2	3	5	5	5	5	5	9	3	0	1	0	0	2	9	2	4	3	3	4	9	5	9	9	4
		SDsp	0.8	0.6	0.8	0.5	0.8	0.5	0.5	0.4	0.8	0.5	0.0	0.8	0.5	0.5	0.0	0.0	0.4	0.5	0.8	1.0	0.8	0.8	0.8	1.0	0.4	0.4	0.4	0.8	0.5	0.5	0.4	0.0	0.0	0.5	$5^{\circ}0$
		Ysp	1.7	2.0	1.8	2.3	1.8	2.5	1.5	1.2	1.5	1.7	1.0	1.5	1.5	1.3	1.0	1.0	1.2	1.3	1.7	1.8	1.7	2.2	1.5	1.8	1.2	1.2	1.2	1.5	1.3	1.3	1.2	1.0	1.0	1.3	;
)		Sdsil	0.9	0.5	0.8	0.5	0.5	0.4	0.5	0.6	0.5	0.8	0.5	0.8	0.5	0.4	0.4	0.4	0.5	0.0	0.8	0.4	0.6	0.5	0.4	0.4	0.0	0.5	0.5	1.0	0.5	0.5	0.4	0.4	0.4	0.0	5 0
		Ysil	2.0	2.3	1.8	2.3	2.3	1.8	1.3	2.0	1.3	1.8	1.7	1.7	1.3	1.2	1.2	1.2	1.3	1.0	1.8	2.2	2.0	2.3	2.2	1.8	1.0	1.7	1.3	1.8	1.5	1.5	1.2	1.2	1.2	1.0	15
		. Au	1	0.	0.	5	4.	2	8	4.	4.	.5	6	0	4.	4.	4	4.	8.	0	0	4.	9	4.	5	8	0	5	5	0	0	5	0	4.	0	0	
		Sdconv	1.	0.0	1.	0.5	0.	0.7	0.8	0.	0.	0.	0.9	1.0	0.	0.	0.	0.	0.0	0.0	1.0	0.	0.6	0.	0.5	0.8	0.0	0.5	0.5	1.0	1.0	0.5	0.0	0.	0.0	0.0	1.0
		Yconv	2.0	2.0	1.8	2.5	2.8	2.0	1.5	1.8	1.2	1.7	2.0	1.8	1.2	1.2	1.2	1.2	1.3	1.0	1.8	2.2	2.0	2.2	2.3	1.8	1.0	1.7	1.3	1.8	1.8	1.3	1.0	1.2	1.0	1.0	1.7
		N	9	9	6	6	9	9	9	9	9	6	6	6	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	6	9	9	9
		Reference	AMR@12.2	AMR @ 12.2	AMR@12.2	AMR@12.2	AMR@12.2	AMR@12.2	AMR@12.2	AMR@12.2	AMR@12.2	AMR@12.2	AMR@12.2	AMR@12.2	AMR@12.2	AMR@12.2	AMR@12.2	AMR@12.2	AMR@12.2	AMR@12.2	AMR@12.2	AMR@12.2	AMR @ 12.2														
		Processed	AMR@12.2/NS1	AMR@12.2/NS2	AMR@12.2/NS3	AMR@12.2/NS4	AMR@12.2/NS5	AMR@12.2/NS6	AMR@12.2/NS1	AMR@12.2/NS2	AMR@12.2/NS3	AMR@12.2/NS4	AMR@12.2/NS5	AMR@12.2/NS6	AMR@12.2/NS1	AMR@12.2/NS2	AMR@12.2/NS3	AMR@12.2/NS4	AMR@12.2/NS5	AMR@12.2/NS6	AMR@12.2/NS1	AMR@12.2/NS2	AMR@12.2/NS3	AMR@12.2/NS4	AMR@12.2/NS5	AMR@12.2/NS6	AMR@12.2/NS1	AMR@12.2/NS2	AMR@12.2/NS3	AMR@12.2/NS4	AMR@12.2/NS5	AMR@12.2/NS6	AMR@12.2/NS1	AMR@12.2/NS2	AMR@12.2/NS3	AMR@12.2/NS4	AMR@12.2/NS5
		Noise/Tandem	Car@6dB/1x	Car@6dB/1x	Car@6dB/1x	Car@6dB/1x	Car@6dB/1x	Car@6dB/1x	Street@9dB/1x	Street@9dB/1x	Street@9dB/1x	Street@9dB/1x	Street@9dB/1x	Street@9dB/1x	Babble@9dB/1x	Babble@9dB/1x	Babble@9dB/1x	Babble@9dB/1x	Babble@9dB/1x	Babble@9dB/1x	Car@12dB/1x	Car@12dB/1x	Car@12dB/1x	Car@12dB/1x	Car@12dB/1x	Car@12dB/1x	Street@15dB/1x	Street@15dB/1x	Street@15dB/1x	Street@15dB/1x	Street@15dB/1x	Street@15dB/1x	Babble@15dB/1x	Babble@15dB/1x	Babble@15dB/1x	Babble@15dB/1x	Babble@15dB/1x
		Cond.	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71

Table 4 (Part 2/3):Experiment 1: Artifacts in initial convergence

Page 7/15

	ch	3	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0
	Speech	2	1	1	1	2	2	2	1	2	2	2	3	1	2	1	2	1	1	1	1	1	4	2	2	1
		1	5	5	5	4	4	4	4	4	4	4	3	5	3	5	4	5	5	5	4	5	2	4	4	5
sm	e	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Histograms	Silence	2	0	3	0	1	1	1	0	1	1	0	1	0	0	2	1	0	1	1	0	1	1	0	0	0
Hi		1	9	3	9	5	5	5	9	5	5	9	5	9	9	4	5	9	5	5	9	5	5	9	9	9
	ence	3	0	1	0	1	1	1	0	0	1	0	1	0	0	0	1	0	1	0	0	0	1	0	0	0
	Convergence	2	0	2	0	0	0	0	0	1	0	0	0	0	0	2	0	0	0	1	0	1	0	0	0	0
	Con	1	6	3	6	5	5	5	9	5	5	9	5	6	9	4	5	6	5	5	6	5	5	6	6	6
		SDsp	0.4	0.4	0.4	0.5	0.5	0.5	0.8	0.5	0.5	0.5	0.5	0.4	0.8	0.4	0.5	0.4	0.4	0.4	0.8	0.4	0.5	0.5	0.5	0.4
		\mathbf{Ysp}	1.2	1.2	1.2	1.3	1.3	1.3	1.5	1.3	1.3	1.3	1.5	1.2	1.7	1.2	1.3	1.2	1.2	1.2	1.5	1.2	1.7	1.3	1.3	1.2
		Sdsil	0.0	0.5	0.0	0.4	0.4	0.4	0.0	0.4	0.4	0.0	0.4	0.0	0.0	0.5	0.4	0.0	0.4	0.4	0.0	0.4	0.4	0.0	0.0	0.0
		Ysil	1.0	1.5	1.0	1.2	1.2	1.2	1.0	1.2	1.2	1.0	1.2	1.0	1.0	1.3	1.2	1.0	1.2	1.2	1.0	1.2	1.2	1.0	1.0	1.0
		Sdconv	0.0	0.8	0.0	0.8	0.8	0.8	0.0	0.4	0.8	0.0	0.8	0.0	0.0	0.5	0.8	0.0	0.8	0.4	0.0	0.4	0.8	0.0	0.0	0.0
		conv	1.0	1.7	1.0	1.3	1.3	1.3	1.0	1.2	1.3	1.0	1.3	1.0	1.0	1.3	1.3	1.0	1.3	1.2	1.0	1.2	1.3	1.0	1.0	1.0
		ΝΥ	9	6	6	9	9	9	9	9	9	9	9	9	9	9	9	6	6	6	9	6	9	6	6	6
		Reference	AMR@12.2	AMR@12.2	AMR@12.2	AMR@12.2	AMR@12.2	AMR@12.2	AMR@5.9	AMR@5.9	AMR@5.9	AMR@5.9	AMR@5.9	AMR@5.9	AMR@12.2	AMR@12.2	AMR@12.2	AMR@12.2	AMR@12.2	AMR@12.2	AMR@5.9	AMR@5.9	AMR@5.9	AMR@5.9	AMR@5.9	AMR@5.9
		Ref	IMA	AMI	AMI	IMA	IMA	IMA	AM	AM	AM	AM	AM	AM	IMA	IMA	AMI	IMA	AMI	AMI	AM	AM	AM	AM	AM	AM
		Processed	AMR@12.2/NS1	AMR@12.2/NS2	AMR@12.2/NS3	AMR@12.2/NS4	AMR@12.2/NS5	AMR@12.2/NS6	AMR@5.9/NS1	AMR@5.9/NS2	AMR@5.9/NS3	AMR@5.9/NS4	AMR@5.9/NS5	AMR@5.9/NS6	AMR@12.2/NS1	AMR@12.2/NS2	AMR@12.2/NS3	AMR@12.2/NS4	AMR@12.2/NS5	AMR@12.2/NS6	AMR@5.9/NS1	AMR@5.9/NS2	AMR@5.9/NS3	AMR@5.9/NS4	AMR@5.9/NS5	AMR@5.9/NS6
		Noise/Tandem	Quiet/1x	Quiet/1x	Quiet/1x	Quiet/1x	Quiet/1x	Quiet/1x	Quiet/1x	Quiet/1x	Quiet/1x	Quiet/1x	Quiet/1x	Quiet/1x	Quiet/2x	Quiet/2x	Quiet/2x	Quiet/2x	Quiet/2x	Quiet/2x	Quiet/2x	Quiet/2x	Quiet/2x	Quiet/2x	Quiet/2x	Quiet/2x
		Cond.	73	74	75	76	77	78	62	80	81	82	83	84	85	86	87	88	89	06	91	92	93	94	95	96

Table 4 (Part 3/3):Experiment 1: Artifacts in initial convergence

Page 8/15

1(3):
art]
(Pa
e S
able
La

Experiment 1: Artifacts in initial convergence, grouped by noise suppressor and sorted by Convergence and Silence scores

																																		-
	ų	3	0	Ι	0	0	Ι	Ι	Ι	0	0	0	0	0	Ι	Ι	Ι	Ι	0	0	0	0	0	0	0	0	0	0	0	0	0	Ι	2	1
	Speech	2	1	2	1	1	1	2	1	1	1	3	3	3	2	2	3	2	5	2	2	0	2	1	1	1	1	0	3	1	4	4	1	С
		1	5	3	5	5	4	3	4	5	5	3	3	3	3	3	2	3	4	4	4	9	4	5	5	5	5	9	3	5	2	1	3	2
sm		3	0	0	0	0	0	0	0	0	0	0	0	0	Ι	Ι	Ι	2	0	0	0	0	0	0	0	0	0	Ι	Ι	Ι	2	2	I	4
Histograms	Silence	2	0	0	0	0	0	0	0	1	1	2	2	2	3	3	3	2	0	1	1	1	1	1	2	4	3	3	2	4	4	4	5	1
His	•1	1	6	6	6	9	9	9	9	5	5	4	4	4	2	2	2	2	9	5	5	5	5	5	4	2	3	2	3	1	0	0	0	1
	nce	3	0	0	0	0	0	0	0	0	0	0	I	Ι	0	2	3	3	0	0	0	0	0	0	0	0	I	0	Ι	0	0	0	I	Ι
	Convergence	2	0	0	0	0	0	0	0	0	0	1	1	1	3	1	0	0	0	1	1	1	1	1	2	4	2	4	2	5	9	9	5	5
	Con	1	9	9	6	9	9	9	9	9	9	5	4	4	3	3	з	3	9	5	5	5	5	5	4	2	3	2	3	1	0	0	0	0
		Ysp	1.2	1.7	2	2	.5	٢.	.5	2	2	.5	.5	.5	.7	1.7	<u>%</u>	٢.	.3	.3	.3	0.	.3	.2	2	.2	.2	0.	.5	2	Γ.	0	8	×,
		Y	1.	1.	1.	1.	1.	1.	1.	1.	1.	1.	1.	1.	1.	1.	1	1.	1.	1.	1.	1	1.	1.	1.	1.	1.	1.	1.	1.	1.	2.	1.	1.
		Ysil	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.2	1.2	1.3	1.3	1.3	1.8	1.8	1.8	2.0	1.0	1.2	1.2	1.2	1.2	1.2	1.3	1.7	1.5	1.8	1.7	2.0	2.3	2.3	2.2	2.5
		NUC	0.	0.	0.1	0.	0.	0.	0.	0.	0.	2	.5	.5	.5	8.	0	0	0.	2	2	2	2	.2	.3	7	7	L	7	8.	0.	0.	2	2
		Ycony	1.	1.	1.	1.	1.	1.	1.	1.	1.	1.	1.	1.	1.	1.	2.0	2.0	1.	1.	1.	1	1.	1.	1.	1.	1.	1.	1.	1.	2.	2.	2.	2
		Z	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
			((2	2	(2	((2	.2	(2	(2	~	2	~	-	2	2	((2	2	.2	((2	(2	.2	•
		erence	R@5.9	R@5.9	AMR@12.2	R@12.	R@5.9	AMR@12.	R@5.9	AMR@5.9	R@12.	R@12.	R@5.9	AMR@12.2	R@5.9	AMR@12.2	R@5.9	AMR@12.2	AMR@5.9	R@5.9	R@12.	R@12.	AMR@5.9	R@5.9	R@12.	AMR@12.2	AMR@12.	R@5.9	AMR@5.9	AMR@12.2	AMR@5.9	AMR@12.	AMR@12.	AMR@5.9
		Refe	AM	[MA]	AMF	AMF	AMI	AMF	AM	AM	AMF	AMF	[MA]	AMF	[MN]	AMF	AM	AMF	AM	AMI	AMF	AMF	AM	AM	AMF	AMF	AMF	AM	AM	AMF	AM	AMF	AMF	AM
							_			_																								
		ed	/NS 1	/NS 1	2/NS 1	2/NS 1	NNS 1	2/NS 1	NNS 1	/NS 1	2/NS 1	2/NS 1	/NS 1	2/NS 1	NNS 1	NNS 1	NNS 1	PNS 1	AMR@5.9/NS 2	AMR @ 5.9/NS 2	AMR@12.2/NS 2	2 NNS 2)/NS 2)/NS 2	2/NS 2	AMR@12.2/NS 2	AMR@12.2/NS 2)/NS 2)/NS 2	AMR@12.2/NS 2	AMR@5.9/NS 2	AMR@12.2/NS 2	AMR@12.2/NS 2)/NS 2
		Processed	AMR @ 5.9/NS	AMR @ 5.9/NS	AMR@12.2/NS	AMR@12.2/NS	AMR@5.9/NS	AMR@12.2/NS	AMR@5.9/NS	AMR @ 5.9/NS	AMR@12.2/NS	AMR@12.2/NS	AMR @ 5.9/NS	AMR@12.2/NS	AMR@5.9/NS	AMR@12.2/NS	AMR@5.9/NS	AMR@12.2/NS 1	R@5.9	R@5.9	@12.2	AMR@12.2/NS	AMR @ 5.9/NS	AMR@5.9/NS	AMR@12.2/NS	@12.2	@12.2	AMR@5.9/NS	AMR@5.9/NS	@12.2	R@5.9	@12.2	@12.2	AMR@5.9/NS
		P	AMI	AMI	AMR	AMR	AMI	AMR	AMI	AMI	AMR	AMR	[MM]	AMR	AMI	AMR	[MM]	AMR	IMA	AMI	AMR	AMR	AMI	AMI	AMR	AMR	AMR	AMI	AMI	AMR	AMI	AMR	AMR	IMA
		ſ	х	IX	х					х	IX	х		K	X				Ix	х	х	Ix				Х		X	X	X				
		Noise/Tandem	Street@15dB/1x	Babble@15dB/1x	Street@15dB/1x	t/1x	t/1x	t/2x	t/2x	Babble@9dB/1	Babble@15dB/1x	Babble@9dB/1x	dB/1x	Street@9dB/1x	Street@9dB/1x	Car@12dB/1x	Car@12dB/1x	dB/1x	Babble@15dB/1x	Babble@9dB/1x	Babble@9dB/1x	Babble@15dB/1x	t/1 x	t/2x	t/2x	Street@15dB/1x	t/1x	Street@15dB/1x	Street@9dB/1x	Street@9dB/1x	Car@12dB/1x	dB/1x	Car@12dB/1x	dB/1x
		oise/T	eet@1	ble@	eet@1	Quiet/1x	Quiet/1x	Quiet/2x	Quiet/2x	bble@	ble@	bble@	Car@6dB/1x	reet@	reet@	ar@12	ar@12	Car@6dB/1x	ble@	bble@	bble@	ble@	Quiet/1x	Quiet/2x	Quiet/2x	eet@1	Quiet/1x	eet@1	reet@	reet@	ar@12	Car@6dB/1x	ar@12	Car@6dB/1x
		Ň	Str	Bab	Str					Bai	Bab	Bai	С	Sti	Sti	Ű	Ű	C	Bab	Ba	Ba	Bab				Str		Str	St_1	Sti	Ü	С	Ü	
		Cnd	25	31	61	73	6L	85	91	13	67	49	1	43	7	55	19	37	32	14	50	68	80	92	86	62	74	26	8	44	20	38	56	2

 Table 5 (Part 2/3):

 Experiment 1: Artifacts in initial convergence, grouped by noise suppressor and sorted by Convergence and Silence scores

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0	6 7 7 7 7 7 7 7 7 1 7 7 1 1 7 7 1	0 0	0 0	6 7 7 7 7 7 7 7 7 7 1 7 7 1 1 7 7 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 7																				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					┣┿┿┿┿┿┿┿┿┿┿┿┿╋				┣┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿╋																						
v v v v v v v v	ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	ο ο ο ν ν ν ν ν ν ν ο ο ο ο										· · · · · · · · · · · · · · · · · · · 																									
			- - - - - - - - - -		<u> </u>	<u>1 0 0 7 0 v v v v r 0 7 8 v r v</u>	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						ω ω </th <th>0 0</th> <th>ο ω</th> <th>0 0<!--</th--><th>ω ω<!--</th--><th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>0 0<!--</th--></th></th></th>	0 0	ο ω	0 0 </th <th>ω ω<!--</th--><th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>0 0<!--</th--></th></th>	ω ω </th <th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>0 0<!--</th--></th>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 </th																				
1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.3 1.3 1.3 1.3 1.2 1.3 1.2				1:2 1:2 1:2 1:3 1:3 1:3 1:3 2:2 2:2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																				
0 6 1. 2 6 1. 2 6 1. 2 6 1. 2 6 1.	0 6 1 2 2 6 1 2 6 6 1 2 6 1 1	6 1 1 1 2 2 6 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																																				
3 AMR@12.2 3 AMR@12.2 3 AMR@5.9 3 AMR@12.2	3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2	3 AMR@12.2 3 AMR@12.2 3 AMR@5.9 3 AMR@5.9 3 AMR@5.9 3 AMR@5.9	3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@5.9 3 AMR@5.9 3 AMR@5.9 3 AMR@5.9	3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@5.9	 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@5.9 3 AMR@5.9 3 AMR@5.9 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 	 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@5.9 3 AMR@5.9 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@5.9 3 AMR@5.9 	3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@5.9	 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@5.9 3 AMR@5.9 3 AMR@5.9 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 4 AMR@5.9 	3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@5.9 3 AMR@12.2 3 AMR@5.9 4 AMR@5.9 4 AMR@5.9	3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@5.9 4 AMR@5.9 4 AMR@5.9 4 AMR@5.9	 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@5.9 3 AMR@5.9 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@5.9 4 AMR@5.9 4 AMR@5.9 4 AMR@5.9 	 3 AMR@12.2 4 AMR@5.9 	 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@5.9 3 AMR@5.9 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@5.9 4 AMR@5.9 	3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@5.9 4 AMR@12.2 4 AMR@12.2 4 AMR@12.2 4 AMR@12.2	 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@5.9 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 4 AMR@5.9 	 3 AMR@12.2 4 AMR@12.2 	 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@5.9 3 AMR@5.9 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@5.9 4 AMR@5.9 	 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@5.9 3 AMR@5.9 3 AMR@5.9 3 AMR@12.2 3 AMR@12.2 3 AMR@5.9 4 AMR@12.2 4 AMR@5.9 4 AMR@5.9 4 AMR@5.9 	3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@5.9 4 AMR@12.2																				
3 AMR@12. 3 AMR@5. 3 AMR@12.	3 AMR@12 3 AMR@5.9 3 AMR@12 3 AMR@12 3 AMR@5.9	3 AMR@12 3 AMR@5. 3 AMR@12 3 AMR@12 3 AMR@5. 3 AMR@5. 3 AMR@5. 3 AMR@5.	<u></u>	<u> </u>	<u>, , , , , , , , , , , , , , , , , , , </u>	<u>, , , , , , , , , , , , , , , , , , , </u>	<u></u> <u> </u>	<u>ω ω ω ω ω ω ω ω ω α 4 4</u>	<u>ω</u> ω ω ω ω ω ω ω α 4 4 4	<u></u> <u> </u>	<u>ω ω ω ω ω ω ω ω ω α 4 4 4 4 4 4 4 4 4 4 </u>	(w) w) w	<u>ω</u> ω ω ω ω ω ω ω α α 4 4 4 4 4 4 4 4 4	ω ω	ω ω ω ω ω ω ω ω 4 </td <td>ω ω ω ω ω ω ω ω ω 4 4 4 4 4 4 4 4 4</td> <td>ω ω<!--</td--><td>ω ω<!--</td--><td>ω ω<!--</td--></td></td></td>	ω ω ω ω ω ω ω ω ω 4 4 4 4 4 4 4 4 4	ω ω </td <td>ω ω<!--</td--><td>ω ω<!--</td--></td></td>	ω ω </td <td>ω ω<!--</td--></td>	ω ω </td																				
AMR@5.9 AMR@12.2	3 AMR@5.9 3 AMR@12.2 3 AMR@5.9	3 AMR@5.9 3 AMR@12.2 3 AMR@5.9 3 AMR@5.9	3 AMR@5.9 3 AMR@5.9 3 AMR@12.2 3 AMR@5.9 3 AMR@5.9	 3 AMR@5.9 3 AMR@12.2 3 AMR@5.9 3 AMR@5.9 3 AMR@12.2 3 AMR@12.2 3 AMR@5.9 	 3 AMR@5.9 3 AMR@12.2 3 AMR@5.9 3 AMR@5.9 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 	3 AMR@5.9 3 AMR@12.2 3 AMR@12.2 3 AMR@5.9 3 AMR@5.9 3 AMR@5.9 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@5.9 3 AMR@12.2 3 AMR@5.9	3 AMR@5.9 3 AMR@12.2 3 AMR@12.2 3 AMR@5.9 3 AMR@5.9 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@5.9 3 AMR@5.9 3 AMR@5.9 4 AMR@5.9	 3 AMR@5.9 3 AMR@12.2 3 AMR@12.2 3 AMR@5.9 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@5.9 4 AMR@5.9 	 3 AMR@5.9 3 AMR@12.2 3 AMR@12.2 3 AMR@5.9 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@5.9 4 AMR@5.9 4 AMR@5.9 	 3 AMR@5.9 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@5.9 4 AMR@5.9 4 AMR@5.9 4 AMR@5.9 	 3 AMR@5.9 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@5.9 4 AMR@5.9 4 AMR@5.9 4 AMR@5.9 	 3 AMR@5.9 3 AMR@12.2 3 AMR@12.2 3 AMR@5.9 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@5.9 4 AMR@5.9 	 3 AMR@5.9 3 AMR@12.2 3 AMR@12.2 3 AMR@5.9 3 AMR@12.2 3 AMR@12.2 3 AMR@12.2 3 AMR@5.9 4 AMR@5.9 	 3 AMR@5.9 3 AMR@12.2 4 AMR@5.9 	 3 AMR@5.9 3 AMR@12.2 3 AMR@5.9 4 AMR@12.2 4 AMR@5.9 4 AMR@5.9 4 AMR@5.9 4 AMR@5.9 	 3 AMR@5.9 3 AMR@12.2 4 AMR@5.9 	3 AMR@5.9 3 AMR@12.2 4 AMR@5.9	3 AMR@5.9 4 AMR@5.2 4 AMR@12.2 4 AMR@12.2 4 AMR@12.2	 3 AMR@5.9 3 AMR@12.2 4 AMR@5.9 																				
3 AMR@12.2 6 1.	3 AMR@12.2 6 1 3 AMR@5.9 6 1	3 AMR@12.2 6 1 3 AMR@5.9 6 1 3 AMR@5.9 6 1	3 AMR@12.2 6 1 3 AMR@5.9 6 1 3 AMR@5.9 6 1 3 AMR@5.9 6 1 3 AMR@5.9 6 1	3 AMR@12.2 6 3 AMR@5.9 6 3 AMR@5.9 6 3 AMR@12.2 6 3 AMR@12.2 6 3 AMR@12.2 6 3 AMR@12.2 6 3 AMR@5.9 6	3 AMR@12.2 6 3 AMR@5.9 6 3 AMR@5.9 6 3 AMR@12.2 6	3 AMR@12.2 6 3 AMR@5.9 6 3 AMR@5.9 6 3 AMR@12.2 6 3 AMR@12.2 6 3 AMR@5.9 6 3 AMR@12.2 6 3 AMR@12.2 6 3 AMR@5.9 6 3 AMR@5.9 6 3 AMR@5.9 6	3 AMR@12.2 6 3 AMR@5.9 6 3 AMR@5.9 6 3 AMR@12.2 6 3 AMR@12.2 6 3 AMR@12.2 6 3 AMR@12.2 6 3 AMR@5.9 6	3 AMR@12.2 6 3 AMR@5.9 6 3 AMR@5.9 6 3 AMR@12.2 6 3 AMR@5.9 6 3 AMR@5.9 6 3 AMR@5.9 6 4 AMR@5.9 6	3 AMR@12.2 6 3 AMR@5.9 6 3 AMR@5.9 6 3 AMR@12.2 6 3 AMR@5.9 6 4 AMR@5.9 6 4 AMR@5.9 6 4 AMR@5.9 6	3 AMR@12.2 6 3 AMR@5.9 6 3 AMR@5.9 6 3 AMR@12.2 6 3 AMR@12.2 6 3 AMR@5.9 6 3 AMR@12.2 6 3 AMR@5.9 6 3 AMR@5.9 6 4 AMR@5.9 6	3 AMR@12.2 6 3 AMR@5.9 6 3 AMR@5.9 6 3 AMR@12.2 6 3 AMR@5.9 6 4 AMR@5.9 6	3 AMR@12.2 6 3 AMR@5.9 6 3 AMR@5.9 6 3 AMR@12.2 6 3 AMR@12.2 6 3 AMR@12.2 6 3 AMR@5.9 6 3 AMR@5.9 6 3 AMR@5.9 6 4 AMR@5.9 6	3 AMR@12.2 6 3 AMR@5.9 6 3 AMR@5.9 6 3 AMR@12.2 6 4 AMR@5.9 6	3 AMR@12.2 6 3 AMR@5.9 6 3 AMR@5.9 6 3 AMR@12.2 6 3 AMR@5.9 6 4 AMR@12.2 6 4 AMR@12.2 6	3 AMR@12.2 6 3 AMR@5.9 6 3 AMR@5.9 6 3 AMR@12.2 6 3 AMR@12.2 6 3 AMR@12.2 6 3 AMR@12.2 6 3 AMR@5.9 6 3 AMR@5.9 6 4 AMR@5.9	3 AMR@12.2 6 3 AMR@5.9 6 3 AMR@5.9 6 3 AMR@12.2 6 3 AMR@5.9 6 4 AMR@5.9 6 <tr td=""> 6 <td>3 AMR@12.2 6 3 AMR@5.9 6 3 AMR@5.9 6 3 AMR@12.2 6 3 AMR@5.9 6 4 AMR@5.9 6 <tr td=""> 6 <tr td=""></tr></tr></td><td>3 AMR@12.2 6 3 AMR@5.9 6 3 AMR@5.9 6 3 AMR@12.2 6 3 AMR@5.9 6 4 AMR@12.2 6</td><td>3 AMR@12.2 6 3 AMR@5.9 6 3 AMR@5.9 6 3 AMR@12.2 6 4 AMR@5.9 6 4 AMR@5.9</td></tr> <tr><td></td><td>3 AMR@5.9 6 1</td><td>AMR@5.9 6 1 AMR@5.9 6 1</td><td>AMR@5.9 6 1 AMR@5.9 6 1 AMR@12.2 6 1</td><td>AMR@5.9 6 1.3 AMR@5.9 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.3 AMR@5.9 6 2.0</td><td>AMR@5.9 6 1.3 AMR@5.9 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.8 AMR@12.2 6 1.8 AMR@12.2 6 2.0 AMR@12.2 6 2.0</td><td>AMR@5.9 6 1.3 AMR@5.9 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.8 AMR@12.2 6 2.0 AMR@12.2 6 2.0 AMR@12.2 6 2.0 AMR@12.2 6 2.0</td><td>AMR@5.9 6 1.3 AMR@5.9 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.8 AMR@12.2 6 1.8 AMR@12.2 6 2.0 AMR@12.2 6 2.0 AMR@5.9 6 2.0</td><td>AMR@5.9 6 1.3 AMR@5.9 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.8 AMR@12.2 6 1.8 AMR@12.2 6 2.0 AMR@12.2 6 2.0 AMR@2.9 6 2.0 AMR@5.9 6 1.0 AMR@12.2 6 1.0</td><td>AMR@5.9 6 1.3 AMR@5.9 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.8 AMR@12.2 6 1.8 AMR@12.2 6 2.0 AMR@12.2 6 2.0 AMR@12.2 6 2.0 AMR@2.9 6 2.0 AMR@5.9 6 1.0 AMR@5.9 6 1.0 AMR@5.9 6 1.0 AMR@5.9 6 1.0</td><td>AMR@5.9 6 1.3 AMR@5.9 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.8 AMR@12.2 6 2.0 AMR@12.2 6 2.0 AMR@5.9 6 2.0 AMR@5.9 6 1.0 AMR@5.9 6 1.0</td><td>AMR@5.9 6 1.3 AMR@5.9 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.8 AMR@12.2 6 1.8 AMR@12.2 6 1.8 AMR@12.2 6 2.0 AMR@2.9 6 2.0 AMR@5.9 6 1.0 AMR@5.9 6 1.0 AMR@12.2 6 1.0 AMR@12.2 6 1.0 AMR@5.9 6 1.0 AMR@5.9 6 1.0 AMR@5.9 6 1.0 AMR@5.9 6 1.0</td><td>3 AMR@5.9 6 1.3 3 AMR@5.9 6 1.3 3 AMR@12.2 6 1.3 3 AMR@12.2 6 1.3 3 AMR@12.2 6 1.3 3 AMR@12.2 6 1.8 3 AMR@5.9 6 2.0 3 AMR@5.9 6 2.0 4 AMR@5.9 6 1.0 4 AMR@5.9 6 1.0</td><td>3 AMR@5.9 6 1.3 3 AMR@5.9 6 1.3 3 AMR@12.2 6 1.3 3 AMR@12.2 6 1.3 3 AMR@12.2 6 1.8 3 AMR@12.2 6 1.8 3 AMR@5.9 6 2.0 3 AMR@5.9 6 2.0 4 AMR@5.9 6 1.0 4 AMR@5.9 6 1.0 </td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td></tr>	3 AMR@12.2 6 3 AMR@5.9 6 3 AMR@5.9 6 3 AMR@12.2 6 3 AMR@5.9 6 4 AMR@5.9 6 <tr td=""> 6 <tr td=""></tr></tr>	3 AMR@12.2 6 3 AMR@5.9 6 3 AMR@5.9 6 3 AMR@12.2 6 3 AMR@5.9 6 4 AMR@12.2 6	3 AMR@12.2 6 3 AMR@5.9 6 3 AMR@5.9 6 3 AMR@12.2 6 4 AMR@5.9		3 AMR@5.9 6 1	AMR@5.9 6 1 AMR@5.9 6 1	AMR@5.9 6 1 AMR@5.9 6 1 AMR@12.2 6 1	AMR@5.9 6 1.3 AMR@5.9 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.3 AMR@5.9 6 2.0	AMR@5.9 6 1.3 AMR@5.9 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.8 AMR@12.2 6 1.8 AMR@12.2 6 2.0 AMR@12.2 6 2.0	AMR@5.9 6 1.3 AMR@5.9 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.8 AMR@12.2 6 2.0 AMR@12.2 6 2.0 AMR@12.2 6 2.0 AMR@12.2 6 2.0	AMR@5.9 6 1.3 AMR@5.9 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.8 AMR@12.2 6 1.8 AMR@12.2 6 2.0 AMR@12.2 6 2.0 AMR@5.9 6 2.0	AMR@5.9 6 1.3 AMR@5.9 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.8 AMR@12.2 6 1.8 AMR@12.2 6 2.0 AMR@12.2 6 2.0 AMR@2.9 6 2.0 AMR@5.9 6 1.0 AMR@12.2 6 1.0	AMR@5.9 6 1.3 AMR@5.9 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.8 AMR@12.2 6 1.8 AMR@12.2 6 2.0 AMR@12.2 6 2.0 AMR@12.2 6 2.0 AMR@2.9 6 2.0 AMR@5.9 6 1.0 AMR@5.9 6 1.0 AMR@5.9 6 1.0 AMR@5.9 6 1.0	AMR@5.9 6 1.3 AMR@5.9 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.8 AMR@12.2 6 2.0 AMR@12.2 6 2.0 AMR@5.9 6 2.0 AMR@5.9 6 1.0 AMR@5.9 6 1.0	AMR@5.9 6 1.3 AMR@5.9 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.8 AMR@12.2 6 1.8 AMR@12.2 6 1.8 AMR@12.2 6 2.0 AMR@2.9 6 2.0 AMR@5.9 6 1.0 AMR@5.9 6 1.0 AMR@12.2 6 1.0 AMR@12.2 6 1.0 AMR@5.9 6 1.0 AMR@5.9 6 1.0 AMR@5.9 6 1.0 AMR@5.9 6 1.0	3 AMR@5.9 6 1.3 3 AMR@5.9 6 1.3 3 AMR@12.2 6 1.3 3 AMR@12.2 6 1.3 3 AMR@12.2 6 1.3 3 AMR@12.2 6 1.8 3 AMR@5.9 6 2.0 3 AMR@5.9 6 2.0 4 AMR@5.9 6 1.0 4 AMR@5.9 6 1.0	3 AMR@5.9 6 1.3 3 AMR@5.9 6 1.3 3 AMR@12.2 6 1.3 3 AMR@12.2 6 1.3 3 AMR@12.2 6 1.8 3 AMR@12.2 6 1.8 3 AMR@5.9 6 2.0 3 AMR@5.9 6 2.0 4 AMR@5.9 6 1.0 4 AMR@5.9 6 1.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
3 AMR@12.2 6 3 AMR@5.9 6 3 AMR@5.9 6 3 AMR@12.2 6 3 AMR@5.9 6 4 AMR@5.9 6 <tr td=""> 6 <tr td=""></tr></tr>	3 AMR@12.2 6 3 AMR@5.9 6 3 AMR@5.9 6 3 AMR@12.2 6 3 AMR@5.9 6 4 AMR@12.2 6	3 AMR@12.2 6 3 AMR@5.9 6 3 AMR@5.9 6 3 AMR@12.2 6 4 AMR@5.9 6 4 AMR@5.9																																					
	3 AMR@5.9 6 1	AMR@5.9 6 1 AMR@5.9 6 1	AMR@5.9 6 1 AMR@5.9 6 1 AMR@12.2 6 1	AMR@5.9 6 1.3 AMR@5.9 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.3 AMR@5.9 6 2.0	AMR@5.9 6 1.3 AMR@5.9 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.8 AMR@12.2 6 1.8 AMR@12.2 6 2.0 AMR@12.2 6 2.0	AMR@5.9 6 1.3 AMR@5.9 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.8 AMR@12.2 6 2.0 AMR@12.2 6 2.0 AMR@12.2 6 2.0 AMR@12.2 6 2.0	AMR@5.9 6 1.3 AMR@5.9 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.8 AMR@12.2 6 1.8 AMR@12.2 6 2.0 AMR@12.2 6 2.0 AMR@5.9 6 2.0	AMR@5.9 6 1.3 AMR@5.9 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.8 AMR@12.2 6 1.8 AMR@12.2 6 2.0 AMR@12.2 6 2.0 AMR@2.9 6 2.0 AMR@5.9 6 1.0 AMR@12.2 6 1.0	AMR@5.9 6 1.3 AMR@5.9 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.8 AMR@12.2 6 1.8 AMR@12.2 6 2.0 AMR@12.2 6 2.0 AMR@12.2 6 2.0 AMR@2.9 6 2.0 AMR@5.9 6 1.0 AMR@5.9 6 1.0 AMR@5.9 6 1.0 AMR@5.9 6 1.0	AMR@5.9 6 1.3 AMR@5.9 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.8 AMR@12.2 6 2.0 AMR@12.2 6 2.0 AMR@5.9 6 2.0 AMR@5.9 6 1.0 AMR@5.9 6 1.0	AMR@5.9 6 1.3 AMR@5.9 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.3 AMR@12.2 6 1.8 AMR@12.2 6 1.8 AMR@12.2 6 1.8 AMR@12.2 6 2.0 AMR@2.9 6 2.0 AMR@5.9 6 1.0 AMR@5.9 6 1.0 AMR@12.2 6 1.0 AMR@12.2 6 1.0 AMR@5.9 6 1.0 AMR@5.9 6 1.0 AMR@5.9 6 1.0 AMR@5.9 6 1.0	3 AMR@5.9 6 1.3 3 AMR@5.9 6 1.3 3 AMR@12.2 6 1.3 3 AMR@12.2 6 1.3 3 AMR@12.2 6 1.3 3 AMR@12.2 6 1.8 3 AMR@5.9 6 2.0 3 AMR@5.9 6 2.0 4 AMR@5.9 6 1.0 4 AMR@5.9 6 1.0	3 AMR@5.9 6 1.3 3 AMR@5.9 6 1.3 3 AMR@12.2 6 1.3 3 AMR@12.2 6 1.3 3 AMR@12.2 6 1.8 3 AMR@12.2 6 1.8 3 AMR@5.9 6 2.0 3 AMR@5.9 6 2.0 4 AMR@5.9 6 1.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																				

Page 10/15

÷
3
è
art
Ð
5
ble
Ta

								ł			His	Histograms	ns	1	1	
								Con	Convergence	nce	S	Silence		Ś	Speech	
Cnd	Noise/Tandem	Processed	Reference	N	Yconv	Ysil	Ysp	1	2	3	1	2	3	1	2	3
95	Quiet/2x	AMR@5.9/NS 5	AMR@5.9	9	1.0	1.0	1.3	9	0	0	9	0	0	4	2	0
LL	Quiet/1x	AMR@12.2/NS 5	AMR@12.2	9	1.3	1.2	1.3	5	0	Ι	5	1	0	4	2	0
83	Quiet/1x	AMR@5.9/NS 5	AMR@5.9	9	1.3	1.2	1.5	5	0	Ι	5	1	0	3	3	0
89	Quiet/2x	AMR@12.2/NS 5	AMR@12.2	9	1.3	1.2	1.2	5	0	Ι	5	1	0	5	1	0
17	Babble@9dB/1x	AMR@5.9/NS 5	AMR@5.9	9	1.3	1.3	1.2	5	0	Ι	4	2	0	5	1	0
35	Babble@15dB/1x	AMR@5.9/NS 5	AMR@5.9	9	1.3	1.3	1.3	5	0	Ι	4	2	0	5	0	Ι
53	Babble@9dB/1x	AMR@12.2/NS 5	AMR@12.2	9	1.3	1.3	1.2	5	0	Ι	4	2	0	5	1	0
29	Street@15dB/1x	AMR@5.9/NS 5	AMR@5.9	9	1.5	1.5	1.5	3	3	0	3	3	0	3	3	0
11	Street@9dB/1x	AMR@5.9/NS 5	AMR@5.9	9	1.7	1.5	1.2	3	2	Ι	3	3	0	5	1	0
71	Babble@15dB/1x	AMR@12.2/NS 5	AMR@12.2	9	1.7	1.5	1.3	4	0	2	3	3	0	4	2	0
65	Street@15dB/1x	AMR@12.2/NS 5	AMR@12.2	9	1.8	1.5	1.3	3	1	2	3	3	0	4	2	0
47	Street@9dB/1x	AMR@12.2/NS 5	AMR@12.2	9	2.0	1.7	1.0	2	2	2	2	4	0	9	0	0
59	Car@12dB/1x	AMR@12.2/NS 5	AMR@12.2	9	2.3	2.2	1.5	0	4	2	0	5	Ι	4	1	Ι
23	Car@12dB/1x	AMR@5.9/NS 5	AMR@5.9	9	2.7	2.3	1.7	0	2	4	0	4	2	2	4	0
5	Car@6dB/1x	AMR@5.9/NS 5	AMR@5.9	9	2.7	2.5	2.0	0	2	4	0	3	3	1	4	Ι
41	Car@6dB/1x	AMR@12.2/NS 5	AMR@12.2	9	2.8	2.3	1.8	0	1	5	0	4	2	2	3	Ι
18	Babble@9dB/1x	AMR@5.9/NS 6	AMR@5.9	9	1.0	1.0	1.2	9	0	0	9	0	0	5	1	0
54	Babble@9dB/1x	AMR@12.2/NS 6	AMR@12.2	9	1.0	1.0	1.3	9	0	0	9	0	0	4	2	0
84	Quiet/1x	AMR@5.9/NS 6	AMR@5.9	9	1.0	1.0	1.2	9	0	0	9	0	0	5	1	0
96	Quiet/2x	AMR@5.9/NS 6	AMR@5.9	9	1.0	1.0	1.2	9	0	0	9	0	0	5	1	0
30	Street@15dB/1x	AMR@5.9/NS 6	AMR@5.9	9	1.0	1.2	1.3	9	0	0	5	1	0	4	2	0
12	Street@9dB/1x	AMR@5.9/NS 6	AMR@5.9	9	1.2	1.2	1.5	5	1	0	5	1	0	3	3	0
90	Quiet/2x	AMR@12.2/NS 6	AMR@12.2	9	1.2	1.2	1.2	5	1	0	5	1	0	5	1	0
78	Quiet/1x	AMR@12.2/NS 6	AMR@12.2	6	1.3	1.2	1.3	5	0	I	5	1	0	4	2	0
36	Babble@15dB/1x	AMR@5.9/NS 6	AMR@5.9	6	1.3	1.3	1.5	4	2	0	4	2	0	3	3	0
72	Babble@15dB/1x	AMR@12.2/NS 6	AMR@12.2	9	1.3	1.3	1.2	4	2	0	4	2	0	5	1	0
66	Street@15dB/1x	AMR@12.2/NS 6	AMR@12.2	6	1.3	1.5	1.3	4	2	0	3	3	0	4	2	0
6	Car@6dB/1x	AMR@5.9/NS 6	AMR@5.9	6	1.7	2.0	2.2	2	4	0	2	2	2	1	3	2
60	Car@12dB/1x	AMR@12.2/NS 6	AMR@12.2	6	1.8	1.8	1.8	2	3	I	1	5	0	3	1	2
48	Street@9dB/1x	AMR@12.2/NS 6	AMR@12.2	6	1.8	1.7	1.5	3	1	2	3	2	Ι	4	1	Ι
24	Car@12dB/1x	AMR@5.9/NS 6	AMR@5.9	6	2.0	1.8	2.0	2	2	2	1	5	0	1	4	Ι
42	Car@6dB/1x	AMR@12.2/NS 6	AMR@12.2	9	2.0	1.8	2.5	1	3	Ι	1	5	0	0	3	3

Annex A Subjects comments

Table A.1 Comments for Question B on Artifacts during the leading silence grouped by candidate

Noise/TandemNsProcessedStreet@15dB/1x1AMR@5.9/NS1Babble@15dB/1x1AMR@5.9/NS1Street@15dB/1x1AMR@5.9/NS1Street@15dB/1x1AMR@5.9/NS1Quiet/1x1AMR@5.9/NS1Quiet/2x1AMR@5.9/NS1Quiet/2x1AMR@5.9/NS1Quiet/2x1AMR@5.9/NS1Quiet/2x1AMR@5.9/NS1Quiet/2x1AMR@5.9/NS1Quiet/2x1AMR@5.9/NS1Street@9dB/1x1AMR@12.2/NS1Street@9dB/1x1AMR@12.2/NS1Street@9dB/1x1AMR@12.2/NS1Street@9dB/1x1AMR@5.9/NS1Street@9dB/1x1AMR@12.2/NS1Car@12dB/1x1AMR@12.2/NS2Babble@9dB/1x1AMR@12.2/NS2Babble@9dB/1x1AMR@12.2/NS2Babble@9dB/1x2AMR@12.2/NS2Babble@9dB/1x2AMR@12.2/NS2Babble@9dB/1x2AMR@12.2/NS2Street@9dB/1x2AMR@12.2/NS2Street@9dB/1x2AMR@12.2/NS2Street@9dB/1x2AMR@12.2/NS2Street@9dB/1x2AMR@12.2/NS2Street@9dB/1x2AMR@12.2/NS2Street@9dB/1x2AMR@12.2/NS2Street@9dB/1x2AMR@12.2/NS2Street@9dB/1x2AMR@12.2/NS2Street@9dB/1x2AMR@12.2/NS2Street@9dB/1x2AMR@12.2/NS2Street@9dB/1x2
NS 3 3 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Page 12/15

	T			Τ	Ι	Ţ		1		1	Ι	1	Γ	1	1					[l			Т	T	Ţ								П		П		Т	Т	Τ	٦
'		WIIOSII	- Hoch	MIUSH												whosh	whosh	whosh	whosh								-	ı					whosh	click	WNOSh											whosh	'	· ,	whosh	whosh
- Hondo	lichich	IISUIIS	- chuch	IISUIIS											shush	shush, ocean noise	ocean noise		shush		shush	shush					-	ı	shush			shush	ocean noise		snusn						-	shush			I	1		shush	-	shush
	1		WIIOSII huret et haginning										noise burst	noise fades out		noise fades out	whosh	noise fades out	whosh			1		1			-	ı			whosh	whosh	noise fades out	whosh	wnosn				1		noise pumping					whosh		fast whosh	noise fades out	whosh
	nenne	SIIUSII	shuch	IISUIIS									shush	shush		shush	shush	shush	shush	-		1		little shush	little shush	little shush	shush	shush	little shush	little shush	shush	shush	shush	shush	snusn				little shush	shush			little shush		little shush	shush		little shush	little shush	shush
bang	IIGOIIW	nunpy	wavey	wavey					popping	pause		whosh		whosh	wavey	wavey	wavey	wavey	wavey	,							wavey	wavey		wavey	whosh	wavey, pause	wavey	wavey	wavey					bumpy				ping	pause		ping	ping	popping .	popping
super fast shush	IIGNIIG		SIJUSII chiich at tha ctart	SHUSH at the statt								shush	shush	shush	shush	shush		shush	shush	-		-	shush	shush	shush	shush	shush	shush	shush	shush	shush	shush	shush	shush	snusn									fast shush	fast shush	shush	very fast shush	shush	shush	shush
AMR@12.2	AMD @ 5 0	AMD@177	AMD @ 5 0	AMD@50	AMR@12.2	AMR@59	AMR@12.2	AMR@5.9	AMR@5.9	AMR@12.2	AMR@12.2	AMR@5.9	AMR @ 5.9	AMR@12.2	AMR@12.2	AMR@12.2	AMR@5.9	AMR @ 5.9	AMR@12.2	AMR @ 5.9	AMR@12.2	AMR@5.9	AMR@12.2	AMR @ 5.9	AMR@5.9	AMR@12.2	AMR@5.9	AMR @ 5.9	AMR@12.2	AMR@12.2	AMR@12.2	AMR@12.2	AMR@5.9	AMR@5.9	AMK@12.2	AMK@5.9	AMR @ 5.9	AMR@5.9	AMR@5.9	AMR@5.9	AMR@12.2	AMR@12.2	AMR@5.9	AMR@12.2	AMR@12.2	AMR @ 5.9	AMR@12.2	AMR@12.2	AMR@5.9	AMK@12.2
AMR@12.2/NS3	AMD@5 OMIC2	CONTR. C. MININA	CONTRACTOR IS ANNO	CONICO DIMA	AMR@12 2/NS4	AMR@59/NS4	AMR@12.2/NS4	AMR@5.9/NS4	AMR@5.9/NS4	AMR@12.2/NS4	AMR@12.2/NS4	AMR@5.9/NS4	AMR@5.9/NS4	AMR@12.2/NS4	AMR@12.2/NS4	AMR@12.2/NS4	AMR@5.9/NS4	AMR@5.9/NS4	AMR@12.2/NS4	AMR@5.9/NS5	AMR@12.2/NS5	AMR@5.9/NS5	AMR@12.2/NS5	AMR@5.9/NS5	AMR@5.9/NS5	AMR@12.2/NS5	AMR@5.9/NS5	AMR@5.9/NS5	AMR@12.2/NS5	AMR@12.2/NS5	AMR@12.2/NS5	AMR@12.2/NS5	AMR@5.9/NS5	AMR@5.9/NS5	AMK@12.2/NSS	AMR@5.9/NS6	AMR@5.9/NS6	AMR@5.9/NS6	AMR@5.9/NS6	AMR@5.9/NS6	AMR@12.2/NS6	AMR@12.2/NS6	AMR@5.9/NS6	AMR@12.2/NS6	AMR@12.2/NS6	AMR@5.9/NS6	AMR@12.2/NS6	AMR@12.2/NS6	AMR@5.9/NS6	AMK@12.2/NS6
Street@15dB/1x 3			-		Babble@15dB/1x 4 Babble@15dB/1x 4				3/1x	-	_	3/1x		Street@9dB/1x 4	Street@15dB/1x 4	Car@12dB/1x 4		Car@12dB/1x 4	Car@6dB/1x 4	Quiet/2x 5		Quiet/1x 5	Quiet/2x 5	Babble@9dB/1x 5	Babble@15dB/1x 5	Babble@9dB/1x 5	Street@15dB/1x 5	Street@9dB/1x 5	Babble@15dB/1x 5	Street@15dB/1x 5	Street@9dB/1x 5					Babble@9dB/1x 6 Babble@0dB/1x 6			3/1x	Street@9dB/1x 6	Quiet/2x 6	Quiet/1x 6	Babble@15dB/1x 6	Babble@15dB/1x 6	х			_	ž	Car@6dB/1X 6
63 5) C		70 B		88	94	-		-	-	\vdash	46	64 5	58		22	40	95	LL	83	89	17 H		53 F	29 S	11	71 B			59	23 7	5 2		18 5/ 1	+	96			90			72 B				60	24	42

Page 13/15

Table A.2	Comments for Question C on Artifacts during speech grouped by candidate	
-----------	---	--

														T																	T															
	9	muffling	-	pumping	-		modulation				pumping	pumping	-	1	- mufflinø	0 -		modulation	-	-	1		-		modulation			pumping	1		1								1		modulation	-	muffling	modulation	1	
	5		pumping	clear voice		pumping	pumping	pumping	pumping		pumping			cracking	pumping numning	crackling	pumping		pumping			pumping, like in a tunel	pumping	- modulation	-		tremble on the voice	modulation	pumping	pumping, modulation	tuner		1			shortness in the voice		modulation	pumping	pumping	pumping	- 1	pumping	pumping	pumping	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Subjects	4	-	-	-	pumping		-						cracking voice	granular	- mufflinø	0			envelope distortion					- rraching woice	LIAUALIIS VUICE			-	muffling		murring		1						- 1		-	-	-		tonal distortion	J. 1.1
	3											modulation	shush in bkgd.	Parts streats for strathford	ntue snusn in the bkga.		little scratching				little shush in the bkgd.		ittle shush in the bkgd.	little shush in the bkgd.				little change in clarity	shush in bkgd.	modulation		ittle shush in the bkgd.					shush in bkgd.	little shush in the bkgd.	little shush in the bkgd.	little shush in the bkgd.			shush in bkgd.		voice clarity unchanged	
	2							more bass			more bass				more clearer	more bass														more clearer							more volume			modulation		more bass				
	1	-	metallic	-	-	metallic	the voice is scratched	metallic		modulation like a robot		pumping		void like a rodot	- metallic	in the voice		modul., shush & scratched		-	metallic	a little bit pumped						end of sentence is a echo	metallic		Volce 18 Scratched		1		voice hit with something	0			-	voice got pumped	modulation	-				
	Reference	AMR @ 5.9	AMR@5.9	AMR@12.2	AMR@12.2	AMR @ 5.9	AMR@12.2	AMR @ 5.9	AMR@5.9	AMR@12.2	AMR@12.2	AMR@5.9	AMR@12.2	AMK@3.9	AMR@12.2 AMR@59	AMR@12.2	AMR@5.9	AMR @5.9	AMR@12.2			AMR@5.9	AMR@12.2	AMR@12.2 AMR@50	AMR@12.2	AMR@5.9	AMR@12.2	AMR@5.9	AMR@12.2	AMR@12.2	AIMK @ 5.9	AMR@12.2	AMD@177	AMR@5.9	AMR@5.9	AMR@12.2	AMR@12.2	AMR @ 5.9	AMR@12.2	AMR @ 5.9	AMR@5.9	AMR@12.2	AMR@12.2	AMR @5.9	AMR@12.2	0 1 0
	Processed	AMR@5.9/NS1	AMR@5.9/NS1	AMR@12.2/NS1	AMR@12.2/NS1	AMR@5.9/NS1	AMR@12.2/NS1	AMR@5.9/NS1	AMR@5.9/NS1	AMR@12.2/NS1	AMR@12.2/NS1	AMR@5.9/NS1	AMR@12.2/NS1	ICN/6.C@XIMA	AMR@59/NS1	AMR@12.2/NS1	AMR@5.9/NS2	AMR@5.9/NS2	AMR@12.2/NS2	AMR@12.2/NS2	AMR@5.9/NS2	AMR@5.9/NS2	AMR@12.2/NS2	AMR@12.2/NS2 AMR@5 0/NS2	AMR@12.2/NS2	AMR@5.9/NS2	AMR@12.2/NS2	AMR@5.9/NS2	AMR@12.2/NS2	AMR@12.2/NS2	AMIK@3.9/NS2	AMR@12.2/NS3	ANAD @ 17 7/1022	AMR@5.9/NS3	AMR@5.9/NS3	AMR@12.2/NS3	AMR@12.2/NS3	AMR@5.9/NS3	AMR@12.2/NS3	AMR@5.9/NS3	AMR@5.9/NS3	AMR@12.2/NS3	AMR@12.2/NS3	AMR @5.9/NS3	AMR@12.2/NS3	
	SN	1	1	1	1	1	1	1	1	-	-	-				-	2	2	2		5			7 7 C		+	2	2		-		r m c		- 	3		3	3	3 7	3					3	ç
	Noise/Tandem	Street@15dB/1x	Babble@15dB/1x	Street@15dB/1x	Quiet/1x	Quiet/1x	Quiet/2x	Quiet/2x	Babble@9dB/1x	Babble@15dB/1x	Babble@9dB/1x	Car@6dB/1x	Street @9dB/1x	Street @9dB/1X	Car@12dB/1X Car@12dB/1x	Car@6dB/1x	Babble@15dB/1x	Babble@9dB/1x	Babble@9dB/1x	Babble@15dB/1x	Quiet/1x	Quiet/2x	Quiet/2x	Quiet/1X Street@0dB/1v	Street@15dB/1x	Street@15dB/1x	Street@9dB/1x	Car@12dB/1x	Car@6dB/1x	Car@12dB/1x	Car@odB/IX	Quiet/1x Debble@04D/1::	Dobblo@15dD/1%	Street@15dB/1x	Babble@15dB/1x	Babble@9dB/1x	Street@9dB/1x	Quiet/1x	Quiet/2x	Quiet/2x	Car@6dB/1x	Street@15dB/1x	Car@6dB/1x	Street@9dB/1x	Car@12dB/1x	
	Cnd	25	31	61	73	79	85	91			49	- 1	143	1	cc 61	37	32	14	50		80	92	86	4 ×	62 62	26	44	20	38	56	7	75			1	1	45	81	87	93	Э	63	39	6	57	ć

Page 14/15

					pumping					modulation			pumping		modulation					pumping													modulation			muffling				pumping			modulation			modulation	noise close effect
sracklino –		broken -	pumping -	no changes -	pumping pur	clear voice -	nodulation -	pumping -		om more more more more more more more mo	oumping, broken voice -	pumping -	crackling pun		modulation	pumping -		modulation -	pumping -	pur								oumping, broken voice -	pumping -		pumping, cracking -		pumping mo				modulation -	pumping -	modulation -	pur			pumping mo	pumping, trembled voice -	modulation -	broken mo	pumping noi:
crac	coding artifacts pun			no c	und	clea	moo	und	muffling pun	und	und	coding artifacts pun	crac		envelope distortion moc	und	-1	moe	und	1_		und	1	slightly muffing	und					envelope distortion pun	und	und	und	1	und		muffling moo	und		muffling -	1	envelope distortion -	metalic voice pun	und		envelope distortion brol	tonal distortion pun
	-	little shush in the bkgd. co	little shush in the bkgd.	little shush in the bkgd		-	little shush in the bkgd.			shush in bkgd.		voice clarity unchanged co	modulation -		modulation	little shush in the bkgd.	- 1	-		little shush at end	- sl		little shush in the bkgd		clear voice -		nall room	shush in bkgd			little shush in the bkgd.	little shush in the bkgd.	modulation -		little shush in the bkgd.	shush in bkgd.			-		little modulation -	little modulation -		shush in bkgd. to			
			-	- 1		-			-	-		clearer	-	stronger	more bass	1	-	-	1	1	more high end	1	ce more bass	1		more bass		1	more bass		more bass		1			1	-				1	-	echo		deeper	more bass	more bass
	voice echo			echo		-			-	voice fades out at end		pumping voice	distorted voice		voice clipping at the end	voice scratched	-	-	1	-			sounds like a empty space		get like a flut horn		1		pumping at the end	distorted voice	voice echo		metallic						1	shushing	modulation gets slower	voice echo	voice is echoing			metallic	metallic
AMR @ 5 9	AMR@12.2	AMR @ 5.9	AMR@12.2	AMR @ 5.9	AMR @ 5.9	AMR@12.2	AMR@12.2	AMR @5.9	AMR @5.9	AMR@12.2	AMR@12.2	AMR@12.2	AMR @ 5.9	AMR @5.9	AMR@12.2	AMR @ 5.9	AMR@12.2	AMR @ 5.9	AMR@12.2	AMR @ 5.9	AMR @ 5.9	AMR@12.2	AMR @5.9	AMR @ 5.9	AMR@12.2	AMR@12.2	AMR@12.2	AMR@12.2	AMR@5.9	AMR@5.9	AMR@12.2	AMR @ 5.9	AMR@12.2	AMR @ 5.9	AMR @ 5.9	AMR@5.9	AMR@5.9	AMR@12.2	AMR@12.2	AMR @ 5.9	AMR@12.2	AMR@12.2	AMR @5.9	AMR@12.2	AMR@12.2	AMR@5.9	AMR@12.2
AMR@59/NS4	AMR@12.2/NS4	AMR@5.9/NS4	AMR@12.2/NS4	AMR@5.9/NS4	AMR@5.9/NS4	AMR@12.2/NS4	AMR@12.2/NS4	AMR@5.9/NS4	AMR@5.9/NS4	AMR@12.2/NS4	AMR@12.2/NS4	AMR@12.2/NS4	AMR@5.9/NS4	AMR@5.9/NS4	AMR@12.2/NS4	AMR@5.9/NS5	AMR@12.2/NS5	AMR@5.9/NS5	AMR@12.2/NS5	AMR@5.9/NS5	AMR@5.9/NS5	AMR@12.2/NS5	AMR@5.9/NS5	AMR@5.9/NS5	AMR@12.2/NS5	AMR@12.2/NS5	AMR@12.2/NS5	AMR@12.2/NS5	AMR@5.9/NS5	AMR@5.9/NS5	AMR@12.2/NS5	AMR@5.9/NS6	AMR@12.2/NS6	AMR@5.9/NS6	AMR@5.9/NS6	AMR@5.9/NS6	AMR@5.9/NS6	AMR@12.2/NS6	AMR@12.2/NS6	AMR@5.9/NS6	AMR@12.2/NS6	AMR@12.2/NS6	AMR@5.9/NS6	AMR@12.2/NS6	AMR@12.2/NS6	AMR@5.9/NS6	AMR@12.2/NS6
4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	6	9	9	9	9	9	9	9	9	6	9	6	9	9	9	9
Babble@15dB/1x	Babble@15dB/1x	Quiet/1x	Quiet/2x	Quiet/2x	Babble@9dB/1x	Babble@9dB/1x	Quiet/1x	Street@15dB/1x	Street@9dB/1x	Street@9dB/1x	Street@15dB/1x	Car@12dB/1x	Car@6dB/1x	Car@12dB/1x	Car@6dB/1x	Quiet/2x	Quiet/1x	Quiet/1x	Quiet/2x	Babble@9dB/1x	Babble@15dB/1x	Babble@9dB/1x	Street@15dB/1x	Street@9dB/1x	Babble@15dB/1x	Street@15dB/1x	Street@9dB/1x	Car@12dB/1x	Car@12dB/1x	Car@6dB/1x	Car@6dB/1x	Babble@9dB/1x	Babble@9dB/1x	Quiet/1x	Quiet/2x	Street@15dB/1x	Street@9dB/1x	Quiet/2x	Quiet/1x	Babble@15dB/1x	Babble@15dB/1x	Street@15dB/1x	Car@6dB/1x	Street@9dB/1x	Car@12dB/1x	Car@12dB/1x	Car@6dB/1x
34	70	82	88	94	16	52	76	28	10	46	64	58	4	22	40	95	77	83	89	17	35	53	29	11	71	65	47	59	23	5	41	18	54	84	96	30	12	90	78	36	72	66	9	48	60	24	42

ETSI SMG11

Kyoto, Japan 6-10 December 1999

Title: ETSI/AMR NS Selection Experiment 2 - COMSAT Results

Source*: COMSAT Laboratories

Summary

This document presents a summary for ETSI Adaptive Multi Rate (AMR) Noise Selection (NS) Selection Phase Experiment 2 conducted by COMSAT in the French language.

1. Introduction

COMSAT Laboratories performed a listening laboratory evaluation in French in accordance with the AMR NS Selection Phase Experiment 2. This experiment was designed to assess whether the noise suppression candidate algorithms for the AMR codec operating at 12.2 and 5.9 kbit/s would introduce any degradation for a quiet background for one and two transcodings. The test design is defined in Section 8 of the AMR NS Selection Subjective Test Plan [1]. COMSAT performed Experiment 2 using a subset of the French speech material available in the NTT Speech Database. Forty-eight native speakers of the French language (instead of 24, due to listening session duration constraints) performed as subjects in the test, which was nominally balanced for gender. The raw data collected was used to derive gender-wise and combined-gender pair comparison scores and standard deviation statistics.

2. Source Material

Thirteen single-sentence stimuli were selected for two male and two female talkers from the NTT Speech Database, for a total of 52 different source speech stimuli. Twelve single-sentences were allocated per talker for the main assessment sessions, and one single-sentence was allocated per talker for the practice session. All files had an exact duration of 4 seconds. The source material was provided to COMSAT, the designated Host Laboratory, which was responsible for all pre- and post-processing according to [2].

3. Experimental Design

The test design followed the specification in the AMR NS Selection Test Plan, as summarized in Tables 1 and 2.

4. Processed Material

The host laboratory provided a CDROM with 2720 processed speech files, which corresponds to the processing of (12+1) single-sentence per talker for four talkers through 28 test conditions. See [3] for details on the source speech processing.

Contact:

Simão F. Campos-Neto COMSAT Labs 22300 COMSAT Drive Clarksburg, MD 20871 USA

Tel: +1-301-428-4516 Fax: +1-301-428-9287 E-mail: simao.campos@comsat.com

Table 1:
Factors and Conditions for Experiment 2.

Main Codec Conditions Noise Suppresser Candidates	# 6	Notes
Codec	1	AMR
Codec Modes (FR/HR)	HR	5.9 kbit/s rate
	FR	12.2 kbit/s rate
BER	0	Clear channel, no transmission errors
Input level	1	Nominal (-26dBov)
Acoustic Background Noise	0	None
Tandeming	1	Self tandem condition
Input Characteristic	1	GSM Filtered
Codec references	#	Notes
Test vocoders	1	AMR with NS
Reference vocoder	2	AMR@12.2, AMR@5.9
Other references Direct	#	Notes Nominal level, GSM Filtered
MNRU	0	None, but used in preliminaries
Ideal Noise Suppression	0	None
Common Conditions	#	Notes
GSM Channel	0	NO channel model
Number of talkers	4	2 male + 2 female
Number of speech samples	52	12/talker + 1 practice/talker
Sentences/sample	1	Single sentence stimuli
Listening Instrument		Modified IRS telephone handset
Listening Level	1	-15dBPa (79dB SPL) at ERP
Listeners	48	Naive Listeners
Randomizations	6	6 groups of 4 listeners
Rating Scale	1	PC Instructions
Replications	2	Original presentation order for the first 24 subjects and the modified presentation order for the subsequent 24 subjects.

5. Listening Sessions

COMSAT performed Experiment 2 according to the Test Plan, with the exception that instead of 24 subjects listening to two replications of the processed material, twice as many subjects were used. This was done because the procedure defined in the Test Plan would result in sessions longer than two hours, which COMSAT did not deem appropriate. The option to summon the same subjects at a later date was not a viable solution, in particular because of the tight time schedule proposed for the activity. The most appropriate solution that would still accomplish the objectives of the test design was to use twice the number of subjects, as described below.

5.1 Presentation Sequence Material

COMSAT used the grouping and randomization sequences specified in the AMR NS Selection Test Plan for Experiment 2.

		ation in Clean Speech	Trans-
Cond.	Reference Codec	Processed Codec	codings
1	AMR@12.2	AMR@12.2	1
2	AMR@12.2	AMR@12.2	2
3	AMR@5.9	AMR@5.9	1
4	AMR@5.9	AMR@5.9	2
5	AMR@12.2	AMR/NS1@12.2	1
6	AMR@12.2	AMR/NS2@12.2	1
7	AMR@12.2	AMR/NS3@12.2	1
8	AMR@12.2	AMR/NS4@12.2	1
9	AMR@12.2	AMR/NS5@12.2	1
10	AMR@12.2	AMR/NS6@12.2	1
11	AMR@12.2	AMR/NS1@12.2	2
12	AMR@12.2	AMR/NS2@12.2	2
13	AMR@12.2	AMR/NS3@12.2	2
14	AMR@12.2	AMR/NS4@12.2	2
15	AMR@12.2	AMR/NS5@12.2	2
16	AMR@12.2	AMR/NS6@12.2	2
17	AMR@5.9	AMR/NS1@5.9	1
18	AMR@5.9	AMR/NS2@5.9	1
19	AMR@5.9	AMR/NS3@5.9	1
20	AMR@5.9	AMR/NS4@5.9	1
21	AMR@5.9	AMR/NS5@5.9	1
22	AMR@5.9	AMR/NS6@5.9	1
23	AMR@5.9	AMR/NS1@5.9	2
24	AMR@5.9	AMR/NS2@5.9	2
25	AMR@5.9	AMR/NS3@5.9	2
26	AMR@5.9	AMR/NS4@5.9	2
27	AMR@5.9	AMR/NS5@5.9	2
28	AMR@5.9	AMR/NS6@5.9	2

Table 2:Experiment 2: Degradation in Clean Speech

5.2 Listeners

The subjective assessment was performed using 48 listeners (nominally balanced between male and female), divided in two rounds of six groups of four listeners each. The first 24 subjects listened to the presentation order defined in Annex F.4 of the Test Plan, and the subsequent 24 subjects listened to the presentation order modified as per the instructions in Annex F.4.

The listener selection criteria were compliant with the AMR NS Selection Test Plan, noting that Audiometric testing was not performed on the listeners, for legal reasons. Test subjects were selected from an existing pool of native French language listeners for which past assessment performance data exists indicating their general hearing integrity. Subject performance within this experiment was compared to the overall performance of all listeners used in each experiment as a check on the hearing integrity of each listener at the time of testing. The pre-test listener orientation used by COMSAT conformed to that specified in the Test Plan.

5.3 Audio Presentation

The processed speech material was presented to groups of listeners, seated at separate, visually screened listening stations contained within an acoustically conditioned sound room meeting the requirements for an NC 20 acoustic facility. Presentation was made monaurally using a telephone handset, driven by a distribution amplifier set to deliver monophonic speech to the listener's preferred listening ear at an active level of -15 dBPa (79 dB SPL), using a B&K 4153 Artificial Ear with circumaural headphone adapter, 4134 Microphone element and 2610 Measurement Amplifier.

The processed speech files were stored within the main facility computer and presented to the listeners under program control as 16 kHz samples through a 16-bit, D/A coupled to the input of the distribution amplifier through a Frequency Devices 9002 Eight-pole Elliptic Filter, set for a bandpass of 200-Hz to 3.4-kHz. Auxiliary filtering was performed to achieve an overall modified-IRS receive characteristic.

The listener responses were registered on auxiliary computers. One of these voting terminals is contained within each voting station. Voting was permitted following the completed presentation of each voting stimulus (in this experiment, a pair of associated single-sentences). All seated listeners were required to register responses prior to the subsequent presentation of a new stimulus. Once a group of listeners was conditioned to the dynamics of the voting procedure, the voting response time for each presented stimulus was nominally three seconds for each presented stimulus.

5.4 Scoring

Within experiments using a pair comparison method of assessment, the presented single-sentences were scored by the listeners using a pair comparison scale either as the first stimulus being preferred over the second (encoded by the computer as a vote 1), or otherwise (encoded by the computer as a vote 0). Subjects were forced to choose one of the options, as equal-preference votes are not allowed in standard pair comparison tests. The semantic designations were presented on the screen of the voting terminals and selected through the use of a pointing device. The voting screen was rendered neutral during the presentation of each new stimulus.

As all seated listeners completed their voting, the votes for all stations were transferred to the main facility computer prior to the presentation of subsequent new material. The votes of each group of listeners for each presentation set of speech material were stored as ASCII files within the main facility computer for subsequent analysis and presentation.

Upon completion of the listening sessions, all raw data were de-scrambled and consolidated into a single ASCII file, which was used for the statistical analysis.

6. Statistical Analysis

The statistics to be reported for this pair-comparison experiment [4] are the proportion P of subjects preferring the test stimulus over the reference stimulus (as defined in Table 2) for a total of N votes per condition, the standard deviation s:

$$s = \sqrt{\frac{P \cdot (1-P)}{N}}$$
(Eq.1)

and the upper and lower confidence limits, as calculated by:

$$CI_{1-\alpha} = \frac{N}{N + z_{1-\alpha/2}^{2}} \cdot \left(P + \frac{z_{1-\alpha/2}^{2}}{2N} \pm z_{1-\alpha/2} \sqrt{\frac{P \cdot (1-P)}{N} + \frac{z_{1-\alpha/2}^{2}}{4N^{2}}} \right)$$
(Eq.2)

where $z_{1-\alpha/2}$ is the standardized score for a normal distribution cutting off the lower $\alpha/2$ proportion of cases.

Additionally, a hypothesis to test was whether the preference for the noise reduction-enabled AMR codec was statistically different from the ideal proportion π =0.5, i.e. that the AMR with noise suppression is equally preferred to AMR without noise suppression (for quiet background). In other words,

$$H_0: \pi = 0.5$$

 $H_1: \pi \neq 0.5$

 $|z| \geq z_{1-\alpha/2}$

The null hypothesis Ho is tested using a *z* test where:

$$z = \frac{P - \pi}{\sqrt{\frac{\pi(1 - \pi)}{N}}} = \frac{P - 0.5}{0.5 / \sqrt{384}} = 2\sqrt{384} \cdot (P - 0.5) = 39.192 \cdot (P - 0.5)$$
(Eq.3)

Hence, the null hypothesis is rejected if

Or accepted if:

$$0.5 - \frac{z_{1-\alpha/2}}{39.19} < P < 0.5 + \frac{z_{1-\alpha/2}}{39.19}$$
(Eq.4)

For a 95% confidence level, Equations 2 and 4 are reduced to ($z_{1-\alpha/2} = 1.96$, N=384):

$$CI_{95\%} = \frac{N}{N+3.84} \left[P + \frac{1.92}{N} \pm 1.96\sqrt{\frac{P \cdot (1-P)}{N} + \frac{0.96}{N^2}} \right] \approx 0.99 \left[P + 0.005 \pm 0.1\sqrt{P(1-P)} \right]$$
(Eq.5)

$$0.45 < P < 0.55$$
 (Eq.6)

Table 3 presents the basic statistical analysis data produced by COMSAT for AMR NS Selection Experiment 2, similar to the data provided to the Global Analysis Laboratory. Each test condition received a total of 96 votes. In the table, *Cnd* represents the test condition number, *P* is the proportion of subjects preferring the Test Codec stimulus, *s* is the standard deviation, +95% and -95% represent the upper and lower $(1-\alpha)=95\%$ confidence limits (as calculated by Eq.5), and the *Ho* column identifies whether the null hypothesis is accepted (A) or rejected (R), as calculated by Eq.6.

It can be seen from Table 3 that, at the 95% confidence level, NS 1 failed the null hypothesis for one transcoding at 12.2 kbit/s, NS 2 failed the null hypothesis for two transcodings at 12.2 kbit/s, and NS 4 failed the null hypothesis for both 12.2 kbit/s and 5.9 kbit/s two-transcoding cases.

7. Conclusion

COMSAT performed AMR NS Selection Experiment 2 for the French language in compliance with the test plan, with the exception that 48 subjects were used, instead of 24, to achieve the desired test power while keeping the listening assessment sessions within the time limit usually used by COMSAT. This experiment was designed to assess whether the noise suppression candidate algorithms for the AMR codec operating at 12.2 and 5.9 kbit/s would introduce any degradation for a quiet background. It was observed that the basic hypothesis that the subjects would equally prefer the AMR codec with noise suppression over the AMR codec without noise suppression in a quiet background was not valid at the 95% confidence level for NS candidate 1 for one transcoding at 12.2 kbit/s, for NS candidate 2 for two transcodings at 12.2 kbit/s, and for NS candidate 4 at 12.2 kbit/s and 5.9 kbit/s in the two-transcoding case. In all other cases, the subjects equally preferred the AMR codec with or without noise suppression for a quiet background.

References

- [1] SMG11SQ, "Test Plan for the AMR Specification for the AMR-NS Selection Phase"; Tdoc SMG11 288/99.
- [2] SMG11SQ, "Processing Functions for the GSM AMR Noise Suppression Selection Tests"; Tdoc SMG11 281R/99
- [3] COMSAT Laboratories, "Host Laboratory Processing for ETSI/AMR Noise Suppression Selection Tests", Tdoc SMG11 417/99
- [4] Glass, G.V; Hopkins, K.D., "Statistical Methods in Education and Psychology"; 3rd edition; Allyn & Bacon, Needham Heights, MA 02194, 1995; pp.319-330.

	Reference	Processed				-			TT 0
Cnd	(Reference Codec)	(Test Codec)	Tandem	Ν	Р	s	+95%	-95%	\boldsymbol{H}_{0} ?
1	AMR@12.2	AMR@12.2	1	384	0.4661	0.0255	0.5158	0.4170	Α
2	AMR@12.2	AMR@12.2	2	384	0.5000	0.0255	0.5495	0.4505	Α
3	AMR@5.9	AMR@5.9	1	384	0.5260	0.0255	0.5752	0.4763	Α
4	AMR@5.9	AMR@5.9	2	384	0.5234	0.0255	0.5726	0.4737	Α
5	AMR@12.2	AMR/NS1@12.2	1	384	0.4167	0.0252	0.4663	0.3686	R
6	AMR@12.2	AMR/NS2@12.2	1	384	0.4688	0.0255	0.5184	0.4196	Α
7	AMR@12.2	AMR/NS3@12.2	1	384	0.4974	0.0255	0.5469	0.4479	Α
8	AMR@12.2	AMR/NS4@12.2	1	384	0.5052	0.0255	0.5546	0.4556	Α
9	AMR@12.2	AMR/NS5@12.2	1	384	0.4922	0.0255	0.5417	0.4427	Α
10	AMR@12.2	AMR/NS6@12.2	1	384	0.5000	0.0255	0.5495	0.4505	Α
11	AMR@12.2	AMR/NS1@12.2	2	384	0.5130	0.0255	0.5623	0.4634	Α
12	AMR@12.2	AMR/NS2@12.2	2	384	0.4115	0.0251	0.4610	0.3636	R
13	AMR@12.2	AMR/NS3@12.2	2	384	0.5026	0.0255	0.5520	0.4530	Α
14	AMR@12.2	AMR/NS4@12.2	2	384	0.4349	0.0253	0.4846	0.3864	R
15	AMR@12.2	AMR/NS5@12.2	2	384	0.5156	0.0255	0.5649	0.4659	Α
16	AMR@12.2	AMR/NS6@12.2	2	384	0.4635	0.0254	0.5132	0.4145	Α
17	AMR@5.9	AMR/NS1@5.9	1	384	0.4870	0.0255	0.5365	0.4376	Α
18	AMR@5.9	AMR/NS2@5.9	1	384	0.4948	0.0255	0.5443	0.4453	Α
19	AMR@5.9	AMR/NS3@5.9	1	384	0.5052	0.0255	0.5546	0.4556	Α
20	AMR@5.9	AMR/NS4@5.9	1	384	0.4922	0.0255	0.5417	0.4427	Α
21	AMR@5.9	AMR/NS5@5.9	1	384	0.5182	0.0255	0.5675	0.4685	Α
22	AMR@5.9	AMR/NS6@5.9	1	384	0.4557	0.0254	0.5054	0.4068	Α
23	AMR@5.9	AMR/NS1@5.9	2	384	0.5026	0.0255	0.5520	0.4530	Α
24	AMR@5.9	AMR/NS2@5.9	2	384	0.4948	0.0255	0.5443	0.4453	Α
25	AMR@5.9	AMR/NS3@5.9	2	384	0.5026	0.0255	0.5520	0.4530	Α
26	AMR@5.9	AMR/NS4@5.9	2	384	0.4427	0.0253	0.4924	0.3941	R
27	AMR@5.9	AMR/NS5@5.9	2	384	0.5156	0.0255	0.5649	0.4659	Α
28	AMR@5.9	AMR/NS6@5.9	2	384	0.5156	0.0255	0.5649	0.4659	Α

 Table 3

 MOS, standard deviation, and 95% confidence interval for COMSAT's Experiment 2

Kyoto, Japan 6-10 December 1999

Title: ETSI/AMR NS Selection Experiments 4&5 - COMSAT Results

Source*: COMSAT Laboratories

Summary

This document presents a summary for ETSI/AMR Noise Suppression (NS) Selection Phase Experiments 4&5 conducted by COMSAT in the Spanish language. This revised version contains the corrections published in the Addendum to SMG11/S4 421, as presented in the SMG11/SA4 Kyoto meeting.

1. Introduction

COMSAT Laboratories performed listening assessments in Spanish for the AMR Noise Selection Experiments 4 and 5. These experiments were designed to evaluate the performance of the six candidate noise suppression algorithms in the presence of three different noise types within the same experiment (car, street, and babble noise) for different signal-to-noise ratios (SNR) and two fixed bit rates (5.9 and 12.2 kbit/s). The six noise suppression candidate algorithms are presented in this contribution using blinded designations NS1 through NS6. A total of four experiments were designed by ETSI, as follows:

- Experiment 4A: Background noise performance for AMR NS at 5.9 kbit/s with low SNR values
- Experiment 4B: Background noise performance for AMR NS at 5.9 kbit/s with high SNR values
- Experiment 5A: Background noise performance for AMR NS at 12.2 kbit/s with low SNR values
- Experiment 5B: Background noise performance for AMR NS at 12.2 kbit/s with high SNR values

As specified in the AMR test plan, the assessment method was a modified version of the Category Comparison Rating (CCR) method defined in [3], in which the reference signal, instead of being the unprocessed ("Direct") speech, was the speech processed through the AMR codec without noise suppression. This was done because the main parameter of interest in this experiment was the NS performance, not the coding quality per se. The only exceptions were the MNRU conditions, whose Reference Signal was the Direct speech. In this report, the reference signal is denoted as stimulus "A", and the test signal is denoted as stimulus "B". In the data reported, a positive CMOS value indicates preference towards the test sample, and a negative value indicates preference towards the reference sample.

After the performance of the subjective sessions, COMSAT discovered that up to version 2.0 of the Test Plan, there was a flaw in the presentation sequences for Experiments 4 & 5. This flaw caused condition 7 (7 dB Ideal noise suppression for car noise) to be systematically paired with the incorrect reference (condition 38, instead of 39) when the B/A direction was played. The problem was discovered in time for the English-language listening laboratory (Nortel) to perform the experiments using corrected presentation sequences. However, half of the votes (96) had to be discarded for condition 7 from COMSAT's analysis in each of the four experiments in their first realization.

Due to time constraints, it was not possible for COMSAT to repeat all the experiments. However, the experiments that could be repeated used corrected presentation sequences, and contain the full 192 votes for condition 7. Additional measures were taken to compensate the CCR presentation direction bias for condition 7 in the experiments that could not be repeated.

Contact:

Simão F. Campos-Neto COMSAT Labs 22300 COMSAT Drive Clarksburg, MD 20871 USA

Tel: +1-301-428-4516 Fax: +1-301-428-9287 E-mail: simao.campos@comsat.com

2. Source Material

COMSAT performed Experiments 4&5 using a subset of the Spanish speech material available in the NTT Speech Database, which was pre-processed in compliance with the specifications in the AMR NS Selection Processing Test Plan [2]. Twenty-four distinct native speakers of the Spanish language performed as subjects for each of the four sub-experiments, which were nominally balanced for gender. In total, 96 subjects were used. The raw data collected was used to derive gender-wise and combined-gender Comparison Mean Opinion Scores (CMOS) and standard deviation statistics for each sub-experiment. Additionally, rank-order analyses were performed for the different impairments in each sub-experiment.

Six sentence-pairs were selected for two male and two female Spanish-speaking talkers from the NTT Speech Database for each of the four experiments. This database contains quiet background speech sampled at 16 kHz, for a bandwidth of 8 kHz. The speech material was selected such that each experiment used a totally distinct set of speech material in the main part of the test.

The quiet background sentence pairs were provided to the Host Laboratory, also performed by COMSAT. The Host Laboratory was responsible for the pre- and post-processing of the speech material, including addition of the background noise.

3. Experiment Design

The experiment designs for Experiments 4 and 5 are defined in Section 10 of the AMR NS Selection Subjective Test Plan [1], and are summarized in Tables 1 and 2. From the tables, it can be seen that the test designs of Experiments 4A, 4B, 5A, and 5B were identical, with the exception of the specific SNR and bit rate values.

4. Processed Material

The host laboratory provided a CDROM for each of the four experiments. For each experiment, a total of 1568 files were produced (382 MB), which corresponds to the blocked processing of the source sentence-pairs through the 32 test conditions and the 32 reference conditions, plus 32 practice session files. See [4] for details on the source speech processing.

5. Listening Sessions

5.1 Presentation Sequence Material

COMSAT used the grouping and randomization sequences specified in the AMR NS Selection Test Plan for Experiments 4&5. All four experiments used the same sequences. After the performance of the subjective sessions, COMSAT discovered that up to version 2.0 of the Test Plan, there was a flaw in the presentation sequences. This flaw caused condition 7 to be systematically paired with the incorrect reference (condition 38, instead of 39) when the B/A direction was played. The problem was corrected in version 2.1 of the test plan.

5.2 Listeners

Each of the four subjective assessments was performed using 24 listeners (nominally balanced between male and female subjects), divided into six groups of four listeners each. In total, 96 different fluent speakers of the Spanish language performed as test subjects.

The listener selection criterion was compliant with the AMR NS Selection Test Plan, noting that audiometric testing was not performed on the listeners, for legal reasons. Test subjects were selected from an existing pool of native Spanish language listeners for which past assessment performance data exists indicating their general hearing integrity. Subject performance within this experiment was compared to the overall performance of all listeners used in each experiment as a check on the hearing integrity of each listener at the time of testing. The pre-test listener orientation used by COMSAT conformed to that specified in the Test Plan.

Main Codec Conditions	#	Notes
Noise Suppresser Candidates	6	
Codec	1	AMR
Codec Modes (HR/FR)	HR	5.9 kbit/s rate for Experiment 4
	FR	12.2 kbit/s rate for Experiment 5
BERs	0	Clear channel, no transmission errors
Input level	1	Nominal (-26dBov)
Acoustic Background Noise	3	Car, street, and babble noise
Background noise SNR	2	Low in 4A and 5A and high in 4B and 5B (see Table 2)
Input Characteristic	1	GSM transmit filtered
Codec references	#	Notes
All Experiments	1	the same AMR rate without NS
Other references	#	Notes
Direct		nominal level, GSM transmit filtered
MNRU		nominal level, GSM transmit filtered, $Q=12$, $\Delta Q=4$
Ideal noise suppression simulation		4, 7, and 10 dB
Common Conditions	#	Notes
GSM Channel	0	No channel model
Number of talkers	4	2 male + 2 female primary talkers
Number of speech samples	28	7 Sentence-pairs/primary talker (6 for Test, 1 for Practice)
Listening instrument		Modified IRS handset
Listening Level	1	-15dBPa (79dB SPL) at Ear Reference Point
Listeners	24	Naive Listeners
Randomizations	6	6 groups of 4 listeners
Rating Scale	1	Comparison Category Rating
Replications	1	Original Presentation Only

Table 1:Factors and Conditions for Experiments 4&5.

5.3 Audio Presentation

The processed speech material was presented to groups of listeners, seated at separate, visually screened listening stations contained within an acoustically conditioned sound room meeting the requirements for an NC 20 acoustic facility. Presentation was made monaurally using a telephone handset. The handset was driven by a distribution amplifier set to deliver monophonic speech to the listener's preferred listening ear at an active level of -15 dBPa (79 dB SPL). The calibration was made using a B&K 4153 Artificial Ear with circumaural headphone adapter, 4134 Microphone element and 2610 Measurement Amplifier.

The processed speech files were stored within the main facility computer and presented to the listeners under program control as 16 kHz samples through a 16-bit D/A converter. The D/A converter was coupled to the input of the distribution amplifier through a Frequency Devices 9002 Eight-pole Elliptic Filter, which was set for a bandpass of 200-Hz to 3.4-kHz. Auxiliary filtering was performed to achieve an overall modified-IRS receive characteristic.

The listener responses were registered on auxiliary computers. One of these voting terminals is contained within each voting station. Voting was permitted following the completed presentation of each voting stimulus (in this experiment, two sentence-pairs). All seated listeners were required to register responses prior to the subsequent presentation of a new stimulus. Once a group of listeners was conditioned to the dynamics of the voting procedure, the voting response time for each presented stimulus was nominally four seconds for each presented stimulus.

		4A&5A	4B&5B	Exp.4	Exp.5	A, 4B, 5A, and		
Cond.	Noise	SNR	SNR	Bit rate	Bit rate	Reference	Proces	sed
		(dB)	(dB)	(kbit/s)	(kbit/s)		Codec	Ideal NS
1	Car	6	12	5.9	12.2	AMR	AMR	-
2	Street	9	15	5.9	12.2	AMR	AMR	-
3	Babble	9	15	5.9	12.2	AMR	AMR	-
4	Car	6	12	-	-	MNRU-16	MNRU-12	-
5	Car	6	12	-	-	Direct	MNRU-12	-
4'	Street	9	15	-	-	MNRU-16	MNRU-12	-
5'	Street	9	15	-	-	Direct	MNRU-12	-
4"	Babble	9	15	-	-	MNRU-16	MNRU-12	-
5"	Babble	9	15	-	-	Direct	MNRU-12	-
6	Car	6	12	5.9	12.2	AMR	AMR	4
7	Car	6	12	5.9	12.2	AMR	AMR	7
8	Car	6	12	5.9	12.2	AMR	AMR	10
9	Street	9	15	5.9	12.2	AMR	AMR	4
10	Street	9	15	5.9	12.2	AMR	AMR	7
11	Street	9	15	5.9	12.2	AMR	AMR	10
12	Babble	9	15	5.9	12.2	AMR	AMR	4
13	Babble	9	15	5.9	12.2	AMR	AMR	7
14	Babble	9	15	5.9	12.2	AMR	AMR	10
15	Car	6	12	5.9	12.2	AMR	AMR/NS1	-
16	Car	6	12	5.9	12.2	AMR	AMR/NS2	-
17	Car	6	12	5.9	12.2	AMR	AMR/NS3	-
18	Car	6	12	5.9	12.2	AMR	AMR/NS4	-
19	Car	6	12	5.9	12.2	AMR	AMR/NS5	-
20	Car	6	12	5.9	12.2	AMR	AMR/NS6	-
21	Street	9	15	5.9	12.2	AMR	AMR/NS1	-
22	Street	9	15	5.9	12.2	AMR	AMR/NS2	-
23	Street	9	15	5.9	12.2	AMR	AMR/NS3	-
24	Street	9	15	5.9	12.2	AMR	AMR/NS4	-
25	Street	9	15	5.9	12.2	AMR	AMR/NS5	-
26	Street	9	15	5.9	12.2	AMR	AMR/NS6	-
27	Babble	9	15	5.9	12.2	AMR	AMR/NS1	-
28	Babble	9	15	5.9	12.2	AMR	AMR/NS2	-
29	Babble	9	15	5.9	12.2	AMR	AMR/NS3	-
30	Babble	9	15	5.9	12.2	AMR	AMR/NS4	-
31	Babble	9	15	5.9	12.2	AMR	AMR/NS5	-
32	Babble	9	15	5.9	12.2	AMR	AMR/NS6	-

 Table 2:

 Allocation of conditions for Experiments 4A, 4B, 5A, and 5B

5.4 Scoring

Within experiments using the Comparison Mean-Opinion-Score (CMOS) method of assessment, the presented (referenced) sentence-pairs were scored by the listeners using a seven-point perceived quality comparison scale as: "Much better, Better, Slightly Better, About the same, Slightly Worse, Worse, and Much Worse". The quality comparison designations were presented on the screen of the voting terminals and selected through the use of a pointing device. The voting screen was rendered neutral during the presentation of each new stimulus.

As all seated listeners completed their voting, the votes for all stations were transferred to the main facility computer prior to the presentation of subsequent new material. The votes of each group of listeners for each presentation set of speech material were stored as ASCII files within the main facility computer for subsequent analysis and presentation.

Upon completion of the listening sessions, all raw data were de-scrambled and consolidated into a single ASCII file, which was used for the statistical analysis.

6. Statistical Analysis

In Experiments 4&5, CMOS expresses the quality degradation of stimulus "B" relative to stimulus "A". In this test, stimulus A was in general the codec-processed speech without noise suppression, and stimulus B was in general the codec-processed speech with noise suppression (see Table 2 for precise descriptions). Positive CMOS values indicate a preference of stimulus B over stimulus A; negative values indicate a preference of stimulus A over stimulus B. Hence, positive CMOS values indicates a preference towards the NS-enabled vocoders. It should be noted that conditions 1, 2 and 3 were null conditions in the four experiments, i.e. stimuli A and B were identical. A total of 192 votes were cast per test condition for male and female talkers combined, or 96 for the gender-wise statistics.

As mentioned before, after the realization of the subjective sessions, a flaw was discovered in the presentation sequences given in the selection test plan. As a result, 96 votes had to be discarded for condition 7, which ended up only having valid data in the A/B presentation direction. Paired presentation experiment designs such as CCR experiments have a presentation direction effect, which is normally compensated by having data presented in both the A/B and B/A direction. Since this was not available for condition 7, an estimate of the direction bias was derived from the subject scores involving the AMR codec (conditions 1..3 and 6..32), and this bias was subtracted from the CMOS value for condition 7 in each experiment. Table 3 presents the CMOS values for the experimental data including this correction for condition 7.

In an effort to provide SMG 11 and SA4 with more reliable data, although limited by the Kyoto meeting date, COMSAT reran three of the four experiments, Experiments 4A, 5A and 5B. The choice of experiments to rerun was based on the overall trends observed for the ideal noise condition scores as well as the magnitude of bias correction necessary. The experiments with larger bias were rerun first. The supplemental data for Experiments 4A, 5A and 5B are presented in Table 4.

Tables 3 and 4 contain the basic statistical analysis data produced by COMSAT for AMR NS Selection Experiment 7. This is the data as provided to the Global Analysis Laboratory, except for the confidence interval columns. Each test condition received a total of 192 votes for combined talkers, or 96 votes per talker for gender-wise statistics. In the tables, *Cnd* represents the test condition number, *Y* is the Comparison Mean Opinion Score, and *SD* is the standard deviation. The upper and lower 95% confidence intervals are denoted as +95% and -95%, respectively, in the table.

Complementarily, Table 5 contains a rank-ordered presentation of the combined talker data in Table 4(a), 3(b), 4(b), and 4(c) for Experiments 4A, 4B, 5A, and 5B, respectively, grouped by impairment type. Upper and lower 95% confidence intervals are also reported. Statistically equivalent test conditions are indicated using Student's t-test Least Significant Difference (LSD) criterion, Tukey-Kramer's Honestly Significant Difference (HSD) Criterion, and Dunnet multiple pair comparison against a control (D). In the table, *Cnd* represents the test condition number, *Y* is the Comparison Mean Opinion Score, and the +95% and -95% columns represent the upper and lower 95% confidence interval, respectively. The *t* column shows which test conditions can be considered equivalent under the LSD criterion (indicated by contiguous vertical lines within each test factor) for a given impairment. The *HSD* column indicates which test conditions can be considered equivalent by the HSD criterion (indicated by contiguous vertical lines within a set of samples. The last column, *D*, indicates whether the CMOS for a test condition is significantly higher than (">"), equivalent to ("="), or significantly lower than ("<") the CMOS values for the control condition (indicated by "-").

Cnd.	Noise/SNR/Rate	Reference	Processed	Votes	Y(all)	SD(all)	+95%	-95%
			Codec/Ideal NS					
1	Car/6dB/5.9	AMR	AMR	192	0.016	0.727	0.118	-0.087
2	Street/9dB/5.9	AMR	AMR	192	0.057	0.657	0.150	-0.036
3	Babble/9dB/5.9	AMR	AMR	192	-0.016	0.802	0.098	-0.129
4	Car/6dB	MNRU-16	MNRU-12	64	-0.453	0.795	-0.258	-0.648
4'	Street/9dB	MNRU-16	MNRU-12	64	-0.500	1.321	-0.176	-0.824
4''	Babble/9dB	MNRU-16	MNRU-12	64	-0.766	1.192	-0.474	-1.058
5	Car/6dB	Direct	MNRU-12	64	-1.469	1.181	-1.179	-1.758
5'	Street/9dB	Direct	MNRU-12	64	-1.297	1.191	-1.005	-1.589
5"	Babble/9dB	Direct	MNRU-12	64	-1.438	1.651	-1.033	-1.842
6	Car/6dB/5.9	AMR	AMR/4 dB	192	0.240	0.755	0.346	0.133
7	Car/6dB/5.9	AMR	AMR/7 dB	96	0.389	0.829	0.554	0.223
8	Car/6dB/5.9	AMR	AMR/10 dB	192	0.870	1.033	1.016	0.724
9	Street/9dB/5.9	AMR	AMR/4 dB	192	0.203	0.841	0.322	0.084
10	Street/9dB/5.9	AMR	AMR/7 dB	192	0.422	1.056	0.571	0.273
11	Street/9dB/5.9	AMR	AMR/10 dB	192	0.776	1.022	0.921	0.632
12	Babble/9dB/5.9	AMR	AMR/4 dB	192	0.224	1.027	0.369	0.079
13	Babble/9dB/5.9	AMR	AMR/7 dB	192	0.344	1.119	0.502	0.185
14	Babble/9dB/5.9	AMR	AMR/10 dB	192	0.557	1.143	0.719	0.396
15	Car/6dB/5.9	AMR	AMR/NS1	192	0.500	1.068	0.651	0.349
16	Car/6dB/5.9	AMR	AMR/NS2	192	0.682	1.157	0.846	0.519
17	Car/6dB/5.9	AMR	AMR/NS3	192	0.401	0.944	0.535	0.268
18	Car/6dB/5.9	AMR	AMR/NS4	192	0.620	1.037	0.766	0.473
19	Car/6dB/5.9	AMR	AMR/NS5	192	0.552	0.953	0.687	0.417
20	Car/6dB/5.9	AMR	AMR/NS6	192	0.734	1.057	0.884	0.585
21	Street/9dB/5.9	AMR	AMR/NS1	192	0.583	1.085	0.737	0.430
22	Street/9dB/5.9	AMR	AMR/NS2	192	0.542	1.028	0.687	0.396
23	Street/9dB/5.9	AMR	AMR/NS3	192	0.542	1.053	0.691	0.393
24	Street/9dB/5.9	AMR	AMR/NS4	192	0.599	1.107	0.756	0.442
25	Street/9dB/5.9	AMR	AMR/NS5	192	0.354	1.033	0.500	0.208
26	Street/9dB/5.9	AMR	AMR/NS6	192	0.807	1.240	0.983	0.632
27	Babble/9dB/5.9	AMR	AMR/NS1	192	0.302	1.045	0.450	0.154
28	Babble/9dB/5.9	AMR	AMR/NS2	192	0.318	1.087	0.471	0.164
29	Babble/9dB/5.9	AMR	AMR/NS3	192	0.208	1.101	0.364	0.053
30	Babble/9dB/5.9	AMR	AMR/NS4	192	0.344	1.042	0.491	0.196
31	Babble/9dB/5.9	AMR	AMR/NS5	192	0.266	0.942	0.399	0.132
32	Babble/9dB/5.9	AMR	AMR/NS6	192	0.500	1.176	0.666	0.334

Table 3(a) CMOS and standard deviation for COMSAT's Experiment 4A (first realization)

Notes:

- Cnd: Condition number; Noise: Background noise type; SNR is signal-to-noise ratio in dB; Rate is bit rate in kbit/s;

State is on the interval.
The bias compensation for Condition 7 was 0.278 in Experiment 4A.

Cnd.	Noise/SNR/Rate	Reference	Processed	Votes	Y(all)	SD(all)	+95%	-95%
			Codec/Ideal NS					
1	Car/12dB/5.9	AMR	AMR	192	0.005	0.506	0.077	-0.066
2	Street/15dB/5.9	AMR	AMR	192	0.068	0.623	0.156	-0.020
3	Babble/15dB/5.9	AMR	AMR	192	0.021	0.639	0.111	-0.070
4	Car/12dB	MNRU-16	MNRU-12	64	-0.359	1.029	-0.107	-0.612
4'	Street/15dB	MNRU-16	MNRU-12	64	-0.328	0.909	-0.105	-0.551
4"	Babble/15dB	MNRU-16	MNRU-12	64	-0.922	1.251	-0.615	-1.228
5	Car/12dB	Direct	MNRU-12	64	-1.703	1.353	-1.372	-2.035
5'	Street/15dB	Direct	MNRU-12	64	-1.266	1.043	-1.010	-1.521
5"	Babble/15dB	Direct	MNRU-12	64	-2.359	1.045	-2.103	-2.615
6	Car/12dB/5.9	AMR	AMR/4 dB	192	0.214	0.753	0.320	0.107
7	Car/12dB/5.9	AMR	AMR/7 dB	96	0.517	0.790	0.676	0.359
8	Car/12dB/5.9	AMR	AMR/10 dB	192	0.760	0.968	0.897	0.623
9	Street/15dB/5.9	AMR	AMR/4 dB	192	0.245	0.692	0.343	0.147
10	Street/15dB/5.9	AMR	AMR/7 dB	192	0.432	0.728	0.535	0.329
11	Street/15dB/5.9	AMR	AMR/10 dB	192	0.599	0.875	0.723	0.475
12	Babble/15dB/5.9	AMR	AMR/4 dB	192	0.146	0.799	0.259	0.033
13	Babble/15dB/5.9	AMR	AMR/7 dB	192	0.359	0.773	0.469	0.250
14	Babble/15dB/5.9	AMR	AMR/10 dB	192	0.406	0.820	0.522	0.290
15	Car/12dB/5.9	AMR	AMR/NS1	192	0.609	0.965	0.746	0.473
16	Car/12dB/5.9	AMR	AMR/NS2	192	0.667	0.962	0.803	0.531
17	Car/12dB/5.9	AMR	AMR/NS3	192	0.495	0.949	0.629	0.361
18	Car/12dB/5.9	AMR	AMR/NS4	192	0.635	1.094	0.790	0.481
19	Car/12dB/5.9	AMR	AMR/NS5	192	0.583	0.999	0.725	0.442
20	Car/12dB/5.9	AMR	AMR/NS6	192	0.813	1.062	0.963	0.662
21	Street/15dB/5.9	AMR	AMR/NS1	192	0.448	0.861	0.570	0.326
22	Street/15dB/5.9	AMR	AMR/NS2	192	0.448	0.791	0.560	0.336
23	Street/15dB/5.9	AMR	AMR/NS3	192	0.370	0.871	0.493	0.247
24	Street/15dB/5.9	AMR	AMR/NS4	192	0.646	0.904	0.774	0.518
25	Street/15dB/5.9	AMR	AMR/NS5	192	0.438	0.860	0.559	0.316
26	Street/15dB/5.9	AMR	AMR/NS6	192	0.677	1.049	0.825	0.529
27	Babble/15dB/5.9	AMR	AMR/NS1	192	0.318	0.758	0.425	0.211
28	Babble/15dB/5.9	AMR	AMR/NS2	192	0.193	0.837	0.311	0.074
29	Babble/15dB/5.9	AMR	AMR/NS3	192	0.099	0.783	0.210	-0.012
30	Babble/15dB/5.9	AMR	AMR/NS4	192	0.260	0.834	0.378	0.142
31	Babble/15dB/5.9	AMR	AMR/NS5	192	0.115	0.791	0.226	0.003
32	Babble/15dB/5.9	AMR	AMR/NS6	192	0.417	0.870	0.540	0.294

Table 3(b) CMOS and standard deviation for COMSAT's Experiment 4B (first realization)

Legend:

Cnd: Condition number; Noise: Background noise type; SNR is signal-to-noise ratio in dB; Rate is bit rate in kbit/s; NSx is the noise suppressor candidate x. Default parameters are nominal level, 1 transcoding.
Y is Comparison Mean Opinion Score, SD is standard deviation, Se is Standard Error, +95% and -95% are respectively the upper and lower 95% confidence interval.
The bias compensation for Condition 7 was 0.149 in Experiment 4B.

Cnd.	Noise/SNR/Rate	Reference	Processed	Votes	Y(all)	SD(all)	+95%	-95%
			Codec/Ideal NS					
1	Car/6dB/12.2	AMR	AMR	192	0.031	0.909	0.160	-0.097
2	Street/9dB/12.2	AMR	AMR	192	0.031	0.943	0.165	-0.102
3	Babble/9dB/12.2	AMR	AMR	192	-0.010	1.033	0.136	-0.157
4	Car/6dB	MNRU-16	MNRU-12	64	-0.688	1.562	-0.305	-1.070
4'	Street/9dB	MNRU-16	MNRU-12	64	-0.672	1.169	-0.385	-0.958
4"	Babble/9dB	MNRU-16	MNRU-12	64	-0.656	1.116	-0.383	-0.930
5	Car/6dB	Direct	MNRU-12	64	-2.109	1.010	-1.862	-2.357
5'	Street/9dB	Direct	MNRU-12	64	-1.453	1.332	-1.127	-1.780
5"	Babble/9dB	Direct	MNRU-12	64	-1.688	1.531	-1.312	-2.063
6	Car/6dB/12.2	AMR	AMR/4 dB	192	0.313	1.124	0.471	0.154
7	Car/6dB/12.2	AMR	AMR/7 dB	96	0.612	1.088	0.829	0.394
8	Car/6dB/12.2	AMR	AMR/10 dB	192	1.031	1.058	1.181	0.882
9	Street/9dB/12.2	AMR	AMR/4 dB	192	0.333	1.035	0.480	0.187
10	Street/9dB/12.2	AMR	AMR/7 dB	192	0.438	1.138	0.598	0.277
11	Street/9dB/12.2	AMR	AMR/10 dB	192	0.885	1.166	1.050	0.721
12	Babble/9dB/12.2	AMR	AMR/4 dB	192	0.120	1.140	0.281	-0.041
13	Babble/9dB/12.2	AMR	AMR/7 dB	192	0.438	1.110	0.594	0.281
14	Babble/9dB/12.2	AMR	AMR/10 dB	192	0.510	1.193	0.679	0.342
15	Car/6dB/12.2	AMR	AMR/NS1	192	0.651	1.223	0.824	0.478
16	Car/6dB/12.2	AMR	AMR/NS2	192	0.828	1.110	0.985	0.671
17	Car/6dB/12.2	AMR	AMR/NS3	192	0.646	1.171	0.811	0.480
18	Car/6dB/12.2	AMR	AMR/NS4	192	0.854	1.167	1.019	0.689
19	Car/6dB/12.2	AMR	AMR/NS5	192	0.510	1.219	0.683	0.338
20	Car/6dB/12.2	AMR	AMR/NS6	192	0.859	1.252	1.036	0.682
21	Street/9dB/12.2	AMR	AMR/NS1	192	0.734	1.201	0.904	0.565
22	Street/9dB/12.2	AMR	AMR/NS2	192	0.745	1.208	0.916	0.574
23	Street/9dB/12.2	AMR	AMR/NS3	192	0.521	1.198	0.690	0.351
24	Street/9dB/12.2	AMR	AMR/NS4	192	0.495	1.290	0.677	0.312
25	Street/9dB/12.2	AMR	AMR/NS5	192	0.458	1.161	0.623	0.294
26	Street/9dB/12.2	AMR	AMR/NS6	192	0.870	1.236	1.045	0.695
27	Babble/9dB/12.2	AMR	AMR/NS1	192	0.396	1.002	0.538	0.254
28	Babble/9dB/12.2	AMR	AMR/NS2	192	0.396	1.053	0.545	0.247
29	Babble/9dB/12.2	AMR	AMR/NS3	192	0.172	1.022	0.316	0.027
30	Babble/9dB/12.2	AMR	AMR/NS4	192	0.406	1.250	0.583	0.229
31	Babble/9dB/12.2	AMR	AMR/NS5	192	0.135	1.079	0.288	-0.017
32	Babble/9dB/12.2	AMR	AMR/NS6	192	0.536	1.166	0.701	0.372

Table 3(c) CMOS and standard deviation for COMSAT's Experiment 5A (first realization)

Legend:

Cnd: Condition number; Noise: Background noise type; SNR is signal-to-noise ratio in dB; Rate is bit rate in kbit/s; NSx is the noise suppressor candidate x. Default parameters are nominal level, 1 transcoding.
Y is Comparison Mean Opinion Score, SD is standard deviation, Se is Standard Error, +95% and -95% are respectively the upper and lower 95% confidence interval.
The bias compensation for Condition 7 was 0.315 in Experiment 5A.

Cnd.	Noise/SNR/Rate	Reference	Processed	Votes	Y(all)	SD(all)	+95%	-95%
			Codec/Ideal NS					
1	Car/12dB/12.2	AMR	AMR	192	0.047	0.820	0.163	-0.069
2	Street/15dB/12.2	AMR	AMR	192	-0.031	0.744	0.074	-0.137
3	Babble/15dB/12.2	AMR	AMR	192	-0.042	0.792	0.070	-0.154
4	Car/12dB	MNRU-16	MNRU-12	64	-0.422	1.020	-0.172	-0.672
4'	Street/15dB	MNRU-16	MNRU-12	64	-0.422	1.467	-0.062	-0.781
4"	Babble/15dB	MNRU-16	MNRU-12	64	-0.469	1.333	-0.142	-0.795
5	Car/12dB	Direct	MNRU-12	64	-1.703	1.305	-1.383	-2.023
5'	Street/15dB	Direct	MNRU-12	64	-1.594	1.561	-1.211	-1.976
5"	Babble/15dB	Direct	MNRU-12	64	-2.063	0.974	-1.824	-2.301
6	Car/12dB/12.2	AMR	AMR/4 dB	192	0.307	0.834	0.425	0.189
7	Car/12dB/12.2	AMR	AMR/7 dB	96	0.354	0.826	0.519	0.189
8	Car/12dB/12.2	AMR	AMR/10 dB	192	0.771	1.002	0.913	0.629
9	Street/15dB/12.2	AMR	AMR/4 dB	192	0.193	0.745	0.298	0.087
10	Street/15dB/12.2	AMR	AMR/7 dB	192	0.385	0.879	0.510	0.261
11	Street/15dB/12.2	AMR	AMR/10 dB	192	0.776	0.964	0.912	0.640
12	Babble/15dB/12.2	AMR	AMR/4 dB	192	0.104	0.850	0.224	-0.016
13	Babble/15dB/12.2	AMR	AMR/7 dB	192	0.313	1.001	0.454	0.171
14	Babble/15dB/12.2	AMR	AMR/10 dB	192	0.391	1.236	0.565	0.216
15	Car/12dB/12.2	AMR	AMR/NS1	192	0.802	1.079	0.955	0.649
16	Car/12dB/12.2	AMR	AMR/NS2	192	0.708	1.053	0.857	0.559
17	Car/12dB/12.2	AMR	AMR/NS3	192	0.625	1.005	0.767	0.483
18	Car/12dB/12.2	AMR	AMR/NS4	192	0.807	1.038	0.954	0.660
19	Car/12dB/12.2	AMR	AMR/NS5	192	0.641	1.093	0.795	0.486
20	Car/12dB/12.2	AMR	AMR/NS6	192	1.021	1.162	1.185	0.856
21	Street/15dB/12.2	AMR	AMR/NS1	192	0.635	0.905	0.763	0.507
22	Street/15dB/12.2	AMR	AMR/NS2	192	0.693	1.020	0.837	0.548
23	Street/15dB/12.2	AMR	AMR/NS3	192	0.479	0.965	0.616	0.343
24	Street/15dB/12.2	AMR	AMR/NS4	192	0.708	1.022	0.853	0.564
25	Street/15dB/12.2	AMR	AMR/NS5	192	0.464	0.891	0.590	0.337
26	Street/15dB/12.2	AMR	AMR/NS6	192	0.943	1.159	1.107	0.779
27	Babble/15dB/12.2	AMR	AMR/NS1	192	0.297	1.107	0.453	0.140
28	Babble/15dB/12.2	AMR	AMR/NS2	192	0.375	1.142	0.537	0.213
29	Babble/15dB/12.2	AMR	AMR/NS3	192	0.177	1.018	0.321	0.033
30	Babble/15dB/12.2	AMR	AMR/NS4	192	0.396	1.153	0.559	0.233
31	Babble/15dB/12.2	AMR	AMR/NS5	192	0.089	0.953	0.223	-0.046
32	Babble/15dB/12.2	AMR	AMR/NS6	192	0.557	1.143	0.719	0.396

Table 3(d) CMOS and standard deviation for COMSAT's Experiment 5B (first realization)

Legend:

Cnd: Condition number; Noise: Background noise type; SNR is signal-to-noise ratio in dB; Rate is bit rate in kbit/s; NSx is the noise suppressor candidate x. Default parameters are nominal level, 1 transcoding.
Y is Comparison Mean Opinion Score, SD is standard deviation, Se is Standard Error, +95% and -95% are respectively the upper and lower 95% confidence interval.
The bias compensation for Condition 7 was 0.261 in Experiment 5B.

Cnd.	Noise/SNR/Rate	Reference	Processed	Votes	Y(all)	SD(all)	+95%	-95%
			Codec/Ideal NS					
1	Car/6dB/12.2	AMR	AMR	192	-0.052	0.848	0.068	-0.172
2	Street/9dB/12.2	AMR	AMR	192	0.026	0.912	0.155	-0.103
3	Babble/9dB/12.2	AMR	AMR	192	0.010	0.927	0.141	-0.121
4	Car/6dB	MNRU-16	MNRU-12	64	-0.500	1.054	-0.242	-0.758
4'	Street/9dB	MNRU-16	MNRU-12	64	-0.734	1.073	-0.472	-0.997
4''	Babble/9dB	MNRU-16	MNRU-12	64	-0.359	0.932	-0.131	-0.588
5	Car/6dB	Direct	MNRU-12	64	-1.547	1.458	-1.190	-1.904
5'	Street/9dB	Direct	MNRU-12	64	-1.484	1.260	-1.176	-1.793
5"	Babble/9dB	Direct	MNRU-12	64	-0.953	1.385	-0.614	-1.292
6	Car/6dB/12.2	AMR	AMR/4 dB	192	0.266	0.919	0.396	0.136
7	Car/6dB/12.2	AMR	AMR/7 dB	192	0.599	1.003	0.741	0.457
8	Car/6dB/12.2	AMR	AMR/10 dB	192	0.672	1.131	0.832	0.512
9	Street/9dB/12.2	AMR	AMR/4 dB	192	0.198	0.956	0.333	0.063
10	Street/9dB/12.2	AMR	AMR/7 dB	192	0.359	1.039	0.506	0.212
11	Street/9dB/12.2	AMR	AMR/10 dB	192	0.620	1.119	0.778	0.461
12	Babble/9dB/12.2	AMR	AMR/4 dB	192	0.182	1.050	0.331	0.034
13	Babble/9dB/12.2	AMR	AMR/7 dB	192	0.276	1.108	0.433	0.119
14	Babble/9dB/12.2	AMR	AMR/10 dB	192	0.490	1.219	0.662	0.317
15	Car/6dB/12.2	AMR	AMR/NS1	192	0.479	1.189	0.647	0.311
16	Car/6dB/12.2	AMR	AMR/NS2	192	0.641	1.135	0.801	0.480
17	Car/6dB/12.2	AMR	AMR/NS3	192	0.531	1.058	0.681	0.382
18	Car/6dB/12.2	AMR	AMR/NS4	192	0.615	1.147	0.777	0.452
19	Car/6dB/12.2	AMR	AMR/NS5	192	0.411	1.159	0.575	0.248
20	Car/6dB/12.2	AMR	AMR/NS6	192	0.672	1.054	0.821	0.523
21	Street/9dB/12.2	AMR	AMR/NS1	192	0.495	1.093	0.649	0.340
22	Street/9dB/12.2	AMR	AMR/NS2	192	0.505	1.171	0.671	0.340
23	Street/9dB/12.2	AMR	AMR/NS3	192	0.349	0.964	0.485	0.213
24	Street/9dB/12.2	AMR	AMR/NS4	192	0.495	1.224	0.668	0.322
25	Street/9dB/12.2	AMR	AMR/NS5	192	0.177	0.987	0.317	0.038
26	Street/9dB/12.2	AMR	AMR/NS6	192	0.604	1.310	0.790	0.419
27	Babble/9dB/12.2	AMR	AMR/NS1	192	0.406	1.098	0.562	0.251
28	Babble/9dB/12.2	AMR	AMR/NS2	192	0.219	1.075	0.371	0.067
29	Babble/9dB/12.2	AMR	AMR/NS3	192	0.271	1.092	0.425	0.116
30	Babble/9dB/12.2	AMR	AMR/NS4	192	0.240	1.056	0.389	0.090
31	Babble/9dB/12.2	AMR	AMR/NS5	192	0.141	1.031	0.287	-0.005
32	Babble/9dB/12.2	AMR	AMR/NS6	192	0.510	1.126	0.670	0.351
Legend:	- Cnd: Condition num		ground noise type; SNI				ate is bit ra	te in kbit/

Table 4(a)
CMOS and standard deviation for COMSAT's Experiment 4A (second realization)

Cnd: Condition number; Noise: Background noise type; SNR is signal-to-noise ratio in dB; Rate is bit rate in kbit/s; NSx is the noise suppressor candidate x. Default parameters are nominal level, 1 transcoding.
Y is Comparison Mean Opinion Score, SD is standard deviation, Se is Standard Error, +95% and -95% are respectively the upper and lower 95% confidence interval.

0.1			for COMSAT's Ex					050/
Cnd.	Noise/SNR/Rate	Reference	Processed	Votes	Y(all)	SD(all)	+95%	-95%
1	$O_{\rm ev}/(1D/12.2)$		Codec/Ideal NS	102	0.021	0.000	0.140	0.100
1	Car/6dB/12.2	AMR	AMR	192	0.021	0.898	0.148	-0.106
2	Street/9dB/12.2	AMR	AMR	192	0.031	0.805	0.145	-0.083
3	Babble/9dB/12.2	AMR	AMR	192	0.109	0.870	0.232	-0.014
4	Car/6dB	MNRU-16	MNRU-12	64	-0.250	1.512	0.120	-0.620
4'	Street/9dB	MNRU-16	MNRU-12	64	-0.484	1.357	-0.152	-0.817
4"	Babble/9dB	MNRU-16	MNRU-12	64	-0.453	1.068	-0.191	-0.715
5	Car/6dB	Direct	MNRU-12	64	-1.313	1.332	-0.986	-1.639
5'	Street/9dB	Direct	MNRU-12	64	-0.891	1.323	-0.567	-1.215
5"	Babble/9dB	Direct	MNRU-12	64	-1.453	1.321	-1.130	-1.777
6	Car/6dB/12.2	AMR	AMR/4 dB	192	0.328	0.916	0.458	0.199
7	Car/6dB/12.2	AMR	AMR/7 dB	192	0.422	1.010	0.565	0.279
8	Car/6dB/12.2	AMR	AMR/10 dB	192	0.807	1.063	0.958	0.657
9	Street/9dB/12.2	AMR	AMR/4 dB	192	0.203	0.878	0.327	0.079
10	Street/9dB/12.2	AMR	AMR/7 dB	192	0.427	0.968	0.564	0.290
11	Street/9dB/12.2	AMR	AMR/10 dB	192	0.703	1.098	0.858	0.548
12	Babble/9dB/12.2	AMR	AMR/4 dB	192	0.260	0.877	0.385	0.136
13	Babble/9dB/12.2	AMR	AMR/7 dB	192	0.380	0.952	0.515	0.245
14	Babble/9dB/12.2	AMR	AMR/10 dB	192	0.458	1.092	0.613	0.304
15	Car/6dB/12.2	AMR	AMR/NS1	192	0.594	1.019	0.738	0.450
16	Car/6dB/12.2	AMR	AMR/NS2	192	0.729	1.180	0.896	0.562
17	Car/6dB/12.2	AMR	AMR/NS3	192	0.438	1.042	0.585	0.290
18	Car/6dB/12.2	AMR	AMR/NS4	192	0.776	1.096	0.931	0.621
19	Car/6dB/12.2	AMR	AMR/NS5	192	0.604	1.102	0.760	0.448
20	Car/6dB/12.2	AMR	AMR/NS6	192	0.729	1.144	0.891	0.567
21	Street/9dB/12.2	AMR	AMR/NS1	192	0.625	1.056	0.774	0.476
22	Street/9dB/12.2	AMR	AMR/NS2	192	0.536	1.058	0.686	0.387
23	Street/9dB/12.2	AMR	AMR/NS3	192	0.411	1.025	0.556	0.267
24	Street/9dB/12.2	AMR	AMR/NS4	192	0.583	1.080	0.736	0.431
25	Street/9dB/12.2	AMR	AMR/NS5	192	0.281	0.984	0.420	0.131
26	Street/9dB/12.2	AMR	AMR/NS6	192	0.719	1.213	0.420	0.547
27	Babble/9dB/12.2	AMR	AMR/NS1	192	0.313	1.071	0.464	0.161
28	Babble/9dB/12.2	AMR	AMR/NS1 AMR/NS2	192	0.240	0.995	0.380	0.099
28	Babble/9dB/12.2	AMR	AMR/NS2	192	0.240	0.894	0.380	0.129
30	Babble/9dB/12.2	AMR	AMR/NS4	192	0.233	0.894	0.582	0.129
31	Babble/9dB/12.2 Babble/9dB/12.2						0.341	
31		AMR	AMR/NS5	192 192	0.161 0.500	0.868		0.039
32 Legend:	Babble/9dB/12.2	AMR	AMR/NS6 ground noise type; SNI			1.102	0.656	0.344

Table 4(b)	
MOS and standard deviation for COMSAT's Experiment 5A (second realization)	

Cnd: Condition number; Noise: Background noise type; SNR is signal-to-noise ratio in dB; Rate is bit rate in kbit/s; NSx is the noise suppressor candidate x. Default parameters are nominal level, 1 transcoding.
Y is Comparison Mean Opinion Score, SD is standard deviation, Se is Standard Error, +95% and -95% are respectively the upper and lower 95% confidence interval.

Cnd.	Noise/SNR/Rate	Reference	Processed	Votes	Y(all)	SD(all)	+95%	-95%
			Codec/Ideal NS		. ,			
1	Car/12dB/12.2	AMR	AMR	192	-0.026	0.618	0.061	-0.113
2	Street/15dB/12.2	AMR	AMR	192	0.073	0.720	0.175	-0.029
3	Babble/15dB/12.2	AMR	AMR	192	-0.026	0.802	0.087	-0.139
4	Car/12dB	MNRU-16	MNRU-12	64	-0.344	1.130	-0.067	-0.621
4'	Street/15dB	MNRU-16	MNRU-12	64	-0.656	1.011	-0.408	-0.904
4"	Babble/15dB	MNRU-16	MNRU-12	64	-0.891	1.236	-0.588	-1.193
5	Car/12dB	Direct	MNRU-12	64	-1.844	0.877	-1.629	-2.059
5'	Street/15dB	Direct	MNRU-12	64	-2.016	1.134	-1.738	-2.293
5"	Babble/15dB	Direct	MNRU-12	64	-2.203	0.962	-1.967	-2.439
6	Car/12dB/12.2	AMR	AMR/4 dB	192	0.359	0.800	0.473	0.246
7	Car/12dB/12.2	AMR	AMR/7 dB	192	0.682	0.843	0.801	0.563
8	Car/12dB/12.2	AMR	AMR/10 dB	192	0.776	0.964	0.912	0.640
9	Street/15dB/12.2	AMR	AMR/4 dB	192	0.224	0.784	0.335	0.113
10	Street/15dB/12.2	AMR	AMR/7 dB	192	0.510	0.880	0.635	0.386
11	Street/15dB/12.2	AMR	AMR/10 dB	192	0.646	0.965	0.782	0.509
12	Babble/15dB/12.2	AMR	AMR/4 dB	192	0.281	0.894	0.408	0.155
13	Babble/15dB/12.2	AMR	AMR/7 dB	192	0.443	0.925	0.574	0.312
14	Babble/15dB/12.2	AMR	AMR/10 dB	192	0.563	1.062	0.713	0.412
15	Car/12dB/12.2	AMR	AMR/NS1	192	0.854	0.943	0.988	0.721
16	Car/12dB/12.2	AMR	AMR/NS2	192	0.766	0.905	0.894	0.638
17	Car/12dB/12.2	AMR	AMR/NS3	192	0.656	0.835	0.774	0.538
18	Car/12dB/12.2	AMR	AMR/NS4	192	0.807	0.970	0.945	0.670
19	Car/12dB/12.2	AMR	AMR/NS5	192	0.703	0.921	0.833	0.573
20	Car/12dB/12.2	AMR	AMR/NS6	192	1.068	1.093	1.222	0.913
21	Street/15dB/12.2	AMR	AMR/NS1	192	0.682	0.948	0.816	0.548
22	Street/15dB/12.2	AMR	AMR/NS2	192	0.505	0.812	0.620	0.390
23	Street/15dB/12.2	AMR	AMR/NS3	192	0.417	0.852	0.537	0.296
24	Street/15dB/12.2	AMR	AMR/NS4	192	0.646	1.043	0.793	0.498
25	Street/15dB/12.2	AMR	AMR/NS5	192	0.422	0.782	0.533	0.311
26	Street/15dB/12.2	AMR	AMR/NS6	192	0.948	1.001	1.090	0.806
27	Babble/15dB/12.2	AMR	AMR/NS1	192	0.401	1.044	0.549	0.253
28	Babble/15dB/12.2	AMR	AMR/NS2	192	0.406	0.881	0.531	0.282
29	Babble/15dB/12.2	AMR	AMR/NS3	192	0.281	0.918	0.411	0.151
30	Babble/15dB/12.2	AMR	AMR/NS4	192	0.443	0.990	0.583	0.303
31	Babble/15dB/12.2	AMR	AMR/NS5	192	0.302	0.876	0.426	0.178
32	Babble/15dB/12.2	AMR	AMR/NS6	192	0.578	1.010	0.721	0.435
Legend:			ground noise type; SNI				ate is bit ra	te in kbit/

Table 4(c)
CMOS and standard deviation for COMSAT's Experiment 5B (second realization)

Cnd: Condition number; Noise: Background noise type; SNR is signal-to-noise ratio in dB; Rate is bit rate in kbit/s; NSx is the noise suppressor candidate x. Default parameters are nominal level, 1 transcoding.
Y is Comparison Mean Opinion Score, SD is standard deviation, Se is Standard Error, +95% and -95% are respectively the upper and lower 95% confidence interval.

S	Sorted CMOS present	ation organized by impair	ment for	·	T Experi	iment 4A	(second	d realizatio	on)
Cnd.	Noise/SNR/Rate	A x B	Votes	Y(all)	+95%	-95%	t	HSD	D
4"	Babble/9dB	MNRU16 x MNRU12	64	-0.359	-0.131	-0.588			
4	Car/6dB	MNRU16 x MNRU12	64	-0.500	-0.242	-0.758			
4'	Street/9dB	MNRU16 x MNRU12	64	-0.734	-0.472	-0.997			N/A
5	Car/6dB	Direct x MNRU12	64	-0.953	-0.614	-1.292			
5"	Babble/9dB	Direct x MNRU12	64	-1.484	-1.176	-1.793			
5'	Street/9dB	Direct x MNRU12	64	-1.547	-1.190	-1.904			
8	Car/6dB/12.2	AMR x AMR/10 dB	192	0.672	0.832	0.512			>
20	Car/6dB/12.2	AMR x AMR/NS6	192	0.672	0.821	0.523			>
16	Car/6dB/12.2	AMR x AMR/NS2	192	0.641	0.801	0.480			>
18	Car/6dB/12.2	AMR x AMR/NS4	192	0.615	0.777	0.452			>
7	Car/6dB/12.2	AMR x AMR/7 dB	192	0.599	0.741	0.457			>
17	Car/6dB/12.2	AMR x AMR/NS3	192	0.531	0.681	0.382			>
15	Car/6dB/12.2	AMR x AMR/NS1	192	0.479	0.647	0.311			>
19	Car/6dB/12.2	AMR x AMR/NS5	192	0.411	0.575	0.248			>
6	Car/6dB/12.2	AMR x AMR/4 dB	192	0.266	0.396	0.136			>
1	Car/6dB/12.2	AMR x AMR	192	-0.052	0.068	-0.172			-
11	Street/9dB/12.2	AMR x AMR/10 dB	192	0.620	0.778	0.461			>
26	Street/9dB/12.2	AMR x AMR/NS6	192	0.604	0.790	0.419			>
22	Street/9dB/12.2	AMR x AMR/NS2	192	0.505	0.671	0.340			>
21	Street/9dB/12.2	AMR x AMR/NS1	192	0.495	0.649	0.340			>
24	Street/9dB/12.2	AMR x AMR/NS4	192	0.495	0.668	0.322			>
10	Street/9dB/12.2	AMR x AMR/7 dB	192	0.359	0.506	0.212			>
23	Street/9dB/12.2	AMR x AMR/NS3	192	0.349	0.485	0.213			>
9	Street/9dB/12.2	AMR x AMR/4 dB	192	0.198	0.333	0.063			=
25	Street/9dB/12.2	AMR x AMR/NS5	192	0.177	0.317	0.038			=
2	Street/9dB/12.2	AMR x AMR	192	0.026	0.155	-0.103			-
32	Babble/9dB/12.2	AMR x AMR/NS6	192	0.510	0.670	0.351			>
14	Babble/9dB/12.2	AMR x AMR/10 dB	192	0.490	0.662	0.317			>
27	Babble/9dB/12.2	AMR x AMR/NS1	192	0.406	0.562	0.251			>
13	Babble/9dB/12.2	AMR x AMR/7 dB	192	0.276	0.433	0.119			=
29	Babble/9dB/12.2	AMR x AMR/NS3	192	0.271	0.425	0.116			=
30	Babble/9dB/12.2	AMR x AMR/NS4	192	0.240	0.389	0.090			=
28	Babble/9dB/12.2	AMR x AMR/NS2	192	0.219	0.371	0.067			=
12	Babble/9dB/12.2	AMR x AMR/4 dB	192	0.182	0.331	0.034			=
31	Babble/9dB/12.2	AMR x AMR/NS5	192	0.141	0.287	-0.005			=
3	Babble/9dB/12.2	AMR x AMR	192	0.010	0.141	-0.121			-

Table 5(a) airment for COMSAT Experiment 4A (second realization)

Cnd: Condition number; Noise: Background noise type; SNR is signal-to-noise ratio in dB; Rate is bit rate in kbit/s; NSx is the noise suppressor candidate x. Default parameters are nominal level, 1 transcoding.
Y is Comparison Mean Opinion Score, SD is standard deviation, Se is Standard Error, +95% and -95% are respectively the upper and lower 95% confidence interval. Legend:

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Sorted CMOS presentation organized by impairment for COMSAT Experiment 4B (first realization)										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Noise/SNR/Rate		Votes		+95%	-95%	t	HSD	D	
4" Babble/15dB MNRU16 x MNRU12 64 -0.922 -0.615 -1.228 5' Street/15dB Direct x MNRU12 64 -1.266 -1.010 -1.521 5' Babble/15dB Direct x MNRU12 64 -2.359 -2.033 -2.615 20 Car/12dB/12.2 AMR x AMR/NS6 192 0.813 0.963 0.662 8 Car/12dB/12.2 AMR x AMR/NS6 192 0.667 0.897 0.623 16 Car/12dB/12.2 AMR x AMR/NS1 192 0.665 0.803 0.531 18 Car/12dB/12.2 AMR x AMR/NS1 192 0.667 0.835 0.725 0.442 7 Car/12dB/12.2 AMR x AMR/NS3 192 0.495 0.629 0.361 - 6 Car/12dB/12.2 AMR x AMR/NS3 192 0.495 0.629 0.361 - 17 Car/12dB/12.2 AMR x AMR/NS6 192 0.677 0.825 0.529 24 Street/15dB/12.2		Street/15dB	MNRU16 x MNRU12	64	-0.328	-0.105	-0.551				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			MNRU16 x MNRU12			-0.107	-0.612				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	Babble/15dB	MNRU16 x MNRU12	64	-0.922	-0.615	-1.228			N/A	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	Street/15dB	Direct x MNRU12	64	-1.266	-1.010					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Car/12dB	Direct x MNRU12	64	-1.703	-1.372	-2.035				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5"	Babble/15dB	Direct x MNRU12	64	-2.359	-2.103	-2.615				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	20	Car/12dB/12.2	AMR x AMR/NS6	192	0.813	0.963	0.662			>	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8	Car/12dB/12.2	AMR x AMR/10 dB	192	0.760	0.897	0.623			>	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	Car/12dB/12.2	AMR x AMR/NS2	192	0.667	0.803	0.531			>	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	18	Car/12dB/12.2	AMR x AMR/NS4	192	0.635	0.790	0.481			>	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	15	Car/12dB/12.2	AMR x AMR/NS1	192	0.609	0.746	0.473			>	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	19	Car/12dB/12.2	AMR x AMR/NS5	192	0.583	0.725	0.442			>	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7	Car/12dB/12.2	AMR x AMR/7 dB	96	0.517	0.676	0.359			>	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	17	Car/12dB/12.2	AMR x AMR/NS3	192	0.495	0.629	0.361			>	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	Car/12dB/12.2	AMR x AMR/4 dB	192	0.214	0.320	0.107			=	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	Car/12dB/12.2	AMR x AMR	192	0.005	0.077	-0.066			-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	26	Street/15dB/12.2	AMR x AMR/NS6	192	0.677	0.825	0.529			>	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	24	Street/15dB/12.2	AMR x AMR/NS4	192	0.646	0.774	0.518			>	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	11	Street/15dB/12.2	AMR x AMR/10 dB	192	0.599	0.723	0.475			>	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	21	Street/15dB/12.2	AMR x AMR/NS1	192	0.448	0.570	0.326			>	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	22	Street/15dB/12.2	AMR x AMR/NS2	192	0.448	0.560	0.336			>	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	25	Street/15dB/12.2	AMR x AMR/NS5	192	0.438	0.559	0.316			>	
9Street/15dB/12.2AMR x AMR/4 dB192 0.245 0.343 0.147 2Street/15dB/12.2AMR x AMR192 0.068 0.156 -0.020 32Babble/15dB/12.2AMR x AMR/NS6192 0.417 0.540 0.294 14Babble/15dB/12.2AMR x AMR/10 dB192 0.406 0.522 0.290 13Babble/15dB/12.2AMR x AMR/7 dB192 0.359 0.469 0.250 27Babble/15dB/12.2AMR x AMR/NS1192 0.318 0.425 0.211 30Babble/15dB/12.2AMR x AMR/NS4192 0.260 0.378 0.142 28Babble/15dB/12.2AMR x AMR/NS2192 0.193 0.311 0.074 12Babble/15dB/12.2AMR x AMR/NS5192 0.115 0.226 0.003 31Babble/15dB/12.2AMR x AMR/NS3192 0.099 0.210 -0.012	10	Street/15dB/12.2	AMR x AMR/7 dB	192	0.432	0.535	0.329	· .		>	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	23	Street/15dB/12.2	AMR x AMR/NS3	192	0.370	0.493	0.247			>	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	Street/15dB/12.2	AMR x AMR/4 dB	192	0.245	0.343	0.147	· .		=	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	Street/15dB/12.2	AMR x AMR	192	0.068	0.156	-0.020			-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	32	Babble/15dB/12.2	AMR x AMR/NS6	192	0.417	0.540	0.294			>	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	14	Babble/15dB/12.2	AMR x AMR/10 dB	192	0.406	0.522	0.290			>	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	Babble/15dB/12.2	AMR x AMR/7 dB	192	0.359	0.469	0.250			>	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	27	Babble/15dB/12.2	AMR x AMR/NS1	192	0.318	0.425	0.211			>	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30	Babble/15dB/12.2	AMR x AMR/NS4	192	0.260	0.378	0.142			>	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	28	Babble/15dB/12.2	AMR x AMR/NS2	192	0.193	0.311	0.074			=	
29 Babble/15dB/12.2 AMR x AMR/NS3 192 0.099 0.210 -0.012 =	12	Babble/15dB/12.2	AMR x AMR/4 dB	192	0.146	0.259	0.033			=	
	31	Babble/15dB/12.2	AMR x AMR/NS5	192	0.115	0.226	0.003			=	
3 Babble/15dB/12.2 AMR x AMR 192 0.021 0.111 -0.070	29	Babble/15dB/12.2	AMR x AMR/NS3	192	0.099	0.210	-0.012			=	
	3	Babble/15dB/12.2	AMR x AMR	192	0.021	0.111	-0.070			-	

Table 5(b)

Sorted CMOS presentation organized by impairment for COMSAT Experiment 4B (*first* realization)

Legend: - Cnd: Condition number; Noise: Background noise type; SNR is signal-to-noise ratio in dB; Rate is bit rate in kbit/s; NSx is the noise suppressor candidate x. Default parameters are nominal level, 1 transcoding.

- Y is Comparison Mean Opinion Score, SD is standard deviation, Se is Standard Error, +95% and -95% are respectively the upper and lower 95% confidence interval.

- The bias compensation for Condition 7 was 0.149 in Experiment 4B.

S	Sorted CMOS presentation organized by impairment for COMSAT Experiment 5A (second realization)											
Cnd.	Noise/SNR/Rate	A x B	Votes	Y(all)	+95%	-95%	t	HSD	D			
4	Car/6dB	MNRU16 x MNRU12	64	-0.250	0.120	-0.620						
4"	Babble/9dB	MNRU16 x MNRU12	64	-0.453	-0.191	-0.715						
4'	Street/9dB	MNRU16 x MNRU12	64	-0.484	-0.152	-0.817			N/A			
5'	Street/9dB	Direct x MNRU12	64	-0.891	-0.567	-1.215						
5	Car/6dB	Direct x MNRU12	64	-1.313	-0.986	-1.639						
5"	Babble/9dB	Direct x MNRU12	64	-1.453	-1.130	-1.777						
8	Car/6dB/12.2	AMR x AMR/10 dB	192	0.807	0.958	0.657			>			
18	Car/6dB/12.2	AMR x AMR/NS4	192	0.776	0.931	0.621			>			
16	Car/6dB/12.2	AMR x AMR/NS2	192	0.729	0.896	0.562			>			
20	Car/6dB/12.2	AMR x AMR/NS6	192	0.729	0.891	0.567			>			
19	Car/6dB/12.2	AMR x AMR/NS5	192	0.604	0.760	0.448			>			
15	Car/6dB/12.2	AMR x AMR/NS1	192	0.594	0.738	0.450			>			
17	Car/6dB/12.2	AMR x AMR/NS3	192	0.438	0.585	0.290			>			
7	Car/6dB/12.2	AMR x AMR/7 dB	192	0.422	0.565	0.279			>			
6	Car/6dB/12.2	AMR x AMR/4 dB	192	0.328	0.458	0.199			>			
1	Car/6dB/12.2	AMR x AMR	192	0.021	0.148	-0.106			-			
26	Street/9dB/12.2	AMR x AMR/NS6	192	0.719	0.890	0.547			>			
11	Street/9dB/12.2	AMR x AMR/10 dB	192	0.703	0.858	0.548	.		>			
21	Street/9dB/12.2	AMR x AMR/NS1	192	0.625	0.774	0.476			>			
24	Street/9dB/12.2	AMR x AMR/NS4	192	0.583	0.736	0.431			>			
22	Street/9dB/12.2	AMR x AMR/NS2	192	0.536	0.686	0.387			>			
10	Street/9dB/12.2	AMR x AMR/7 dB	192	0.427	0.564	0.290			>			
23	Street/9dB/12.2	AMR x AMR/NS3	192	0.411	0.556	0.267			>			
25	Street/9dB/12.2	AMR x AMR/NS5	192	0.281	0.420	0.142	· .		=			
9	Street/9dB/12.2	AMR x AMR/4 dB	192	0.203	0.327	0.079			=			
2	Street/9dB/12.2	AMR x AMR	192	0.031	0.145	-0.083			-			
32	Babble/9dB/12.2	AMR x AMR/NS6	192	0.500	0.656	0.344			>			
14	Babble/9dB/12.2	AMR x AMR/10 dB	192	0.458	0.613	0.304			>			
30	Babble/9dB/12.2	AMR x AMR/NS4	192	0.401	0.541	0.261			>			
13	Babble/9dB/12.2	AMR x AMR/7 dB	192	0.380	0.515	0.245	,		>			
27	Babble/9dB/12.2	AMR x AMR/NS1	192	0.313	0.464	0.161	.		=			
12	Babble/9dB/12.2	AMR x AMR/4 dB	192	0.260	0.385	0.136			=			
29	Babble/9dB/12.2	AMR x AMR/NS3	192	0.255	0.382	0.129			=			
28	Babble/9dB/12.2	AMR x AMR/NS2	192	0.240	0.380	0.099			=			
31	Babble/9dB/12.2	AMR x AMR/NS5	192	0.161	0.284	0.039			=			
3	Babble/9dB/12.2	AMR x AMR	192	0.109	0.232	-0.014			-			

Table 5(c) airment for COMSAT Experiment 5A (second realization)

Legend: - Cnd: Condition number; Noise: Background noise type; SNR is signal-to-noise ratio in dB; Rate is bit rate in kbit/s; NSx is the

- Y is Comparison Mean Opinion Score, SD is standard deviation, Se is Standard Error, +95% and -95% are respectively the upper and lower 95% confidence interval.

Sorted CMOS presentation organized by impairment for COMSAT Experiment 5B (second realization)										
Cnd.	Noise/SNR/Rate	A x B	Votes	Y(all)	+95%	-95%	t	HSD	D	
4	Car/12dB	MNRU16 x MNRU12	64	-0.344	-0.067	-0.621				
4'	Street/15dB	MNRU16 x MNRU12	64	-0.656	-0.408	-0.904				
4"	Babble/15dB	MNRU16 x MNRU12	64	-0.891	-0.588	-1.193			N/A	
5	Car/12dB	Direct x MNRU12	64	-1.844	-1.629	-2.059				
5'	Street/15dB	Direct x MNRU12	64	-2.016	-1.738	-2.293				
5"	Babble/15dB	Direct x MNRU12	64	-2.203	-1.967	-2.439				
20	Car/12dB/12.2	AMR x AMR/NS6	192	1.068	1.222	0.913			>	
15	Car/12dB/12.2	AMR x AMR/NS1	192	0.854	0.988	0.721			>	
18	Car/12dB/12.2	AMR x AMR/NS4	192	0.807	0.945	0.670			>	
8	Car/12dB/12.2	AMR x AMR/10 dB	192	0.776	0.912	0.640			>	
16	Car/12dB/12.2	AMR x AMR/NS2	192	0.766	0.894	0.638			>	
19	Car/12dB/12.2	AMR x AMR/NS5	192	0.703	0.833	0.573			>	
7	Car/12dB/12.2	AMR x AMR/7 dB	192	0.682	0.801	0.563			>	
17	Car/12dB/12.2	AMR x AMR/NS3	192	0.656	0.774	0.538			>	
6	Car/12dB/12.2	AMR x AMR/4 dB	192	0.359	0.473	0.246	'		>	
1	Car/12dB/12.2	AMR x AMR	192	-0.026	0.061	-0.113	· ·	'	-	
26	Street/15dB/12.2	AMR x AMR/NS6	192	0.948	1.090	0.806			>	
21	Street/15dB/12.2	AMR x AMR/NS1	192	0.682	0.816	0.548	•		>	
11	Street/15dB/12.2	AMR x AMR/10 dB	192	0.646	0.782	0.509		'	>	
24	Street/15dB/12.2	AMR x AMR/NS4	192	0.646	0.793	0.498			>	
10	Street/15dB/12.2	AMR x AMR/7 dB	192	0.510	0.635	0.386			>	
22	Street/15dB/12.2	AMR x AMR/NS2	192	0.505	0.620	0.390	· '		>	
25	Street/15dB/12.2	AMR x AMR/NS5	192	0.422	0.533	0.311	· '		>	
23	Street/15dB/12.2	AMR x AMR/NS3	192	0.417	0.537	0.296			>	
9	Street/15dB/12.2	AMR x AMR/4 dB	192	0.224	0.335	0.113		'	>	
2	Street/15dB/12.2	AMR x AMR	192	0.073	0.175	-0.029		'	-	
32	Babble/15dB/12.2	AMR x AMR/NS6	192	0.578	0.721	0.435			>	
14	Babble/15dB/12.2	AMR x AMR/10 dB	192	0.563	0.713	0.412			>	
13	Babble/15dB/12.2	AMR x AMR/7 dB	192	0.443	0.574	0.312			>	
30	Babble/15dB/12.2	AMR x AMR/NS4	192	0.443	0.583	0.303			>	
28	Babble/15dB/12.2	AMR x AMR/NS2	192	0.406	0.531	0.282			>	
27	Babble/15dB/12.2	AMR x AMR/NS1	192	0.401	0.549	0.253			>	
31	Babble/15dB/12.2	AMR x AMR/NS5	192	0.302	0.426	0.178	'		>	
12	Babble/15dB/12.2	AMR x AMR/4 dB	192	0.281	0.408	0.155			>	
29	Babble/15dB/12.2	AMR x AMR/NS3	192	0.281	0.411	0.151			>	
3	Babble/15dB/12.2	AMR x AMR	192	-0.026	0.087	-0.139			-	
				-						

Table 5(d)

COMSAT Experiment 5R (second realization) Sorted CMOS contatio 41 . + f.

Legend: - Cnd: Condition number; Noise: Background noise type; SNR is signal-to-noise ratio in dB; Rate is bit rate in kbit/s; NSx is the

- Y is Comparison Mean Opinion Score, SD is standard deviation, Se is Standard Error, +95% and -95% are respectively the upper and lower 95% confidence interval.

Table 5 provides the most convenient presentation of the test data for statistical comparisons, in particular using the HSD and Dunnet criteria. Overall across the 4 experiments, it can be seen that the rank-order of the NS-enabled solutions was in all cases higher than AMR without NS. However, for car and street noise, most of the NS-enabled AMR solutions were significantly preferred than AMR without NS, while for babble noise a smaller number of NS solutions were significantly preferred to AMR without NS. The cases with no significant differences were as follows:

- Using the HSD criterion, NS 3 and 5 were equally preferred in Experiment 4A to AMR without NS for street noise. Under the Dunnet criterion, only NS 5 was equivalent to AMR without NS under street noise. For babble noise, both HSD and Dunnet indicate that NS 2, 3, 4, and 5 were equally preferred to AMR without NS.
- In Experiment 4B, NS 2, 3, 4 and 5 were equivalent under the HSD criterion to AMR without NS when babble noise is present. Under the Dunnet criterion, only NS 2, 3, and 5 were equivalent to AMR without NS when babble noise is present..
- In Experiment 5A, NS 5 under street noise and NS 1, 2, 3, 4, and 5 under babble noise were equivalent to AMR without NS using the HSD criterion. With the Dunnet criterion, NS 5 under street noise and NS 1, 2, 3, and 5 under babble noise were again equivalent to AMR without NS.
- In Experiment 5B, all NS solutions were significantly preferred to AMR without NS for any of the three noises (using either HSD or Dunnet criteria).

As regards the ideal noise suppression scores, Table 6 summarizes the HSD equivalencies of the ideal NS cases from Table 5. It can be seen that there is a trend that indicates that for the car noise cases, 4 and 7 dB ideal NS were equally preferred for low SNR cases and 10 and 7 dB ideal NS were equally preferred for high SNR cases. Additionally, 7 and 10 dB cases were also equally preferred in the low SNR, 5.9 kbit/s, car noise case. In the presence of street noise, 4 and 7 dB ideal NS were equally preferred for low SNR; however, in this case, 7 and 10 dB ideal NS were also equivalently preferred. No distinction in preference was observed for the ideal NS cases with AMR at 5.9 kbit/s in high SNR street noise, while for the higher bit rate (12.2 kbit/s), 7 and 10 dB ideal NS were also equally preferred than 4 dB ideal NS. For all babble noise cases but the high SNR at 5.9 kbit/s case, all three ideal SNR cases were equally preferred.

Table 7 contains a summary of the rank-orders (irrespective of statistical significance) observed for the six NS solutions studied in Experiments 4 and 5. Overall, it can be seen that NS 6 held the highest-ranking position in 8 out of 9 cases. NS 1, 2, and 4 also showed up in the upper ranking positions. Alternatively, NS 3 and 5 most of the time occupied the lower ranking positions. This is likely to indicate that NS 6 was the most aggressive noise suppressor, while NS 3 and 5 had a more conservative behavior.

Noise	Ideal	1	R (6/9 dB)	ression in Experiments 44 High SNR (12/15 dB)				
Туре	NS	4 A	5A	4B	5B			
Car	10 7 4							
Street	10 7 4							
Babble	10 7 4							

Table	e 6:
managers of USD aritarian for Idaal N	aica Summaccian in Europinanta 18-1

 Table 7:

 Summary presentation of rank-order for the NS candidates in Experiments 4&5

4A 4B					5A			5B			
Car	Street	Babble	Car	Street	Babble	Car	Street	Babble	Car	Street	Babble
6	6	6	6	6	6	4	6	6	6	6	6
2	2	1	2	4	1	2	1	4	1	1	4
4	1	3	4	1	4	6	4	1	4	4	2
3	4	4	1	2	2	5	2	3	2	2	1
1	3	2	5	5	5	1	3	2	5	5	5
5	5	5	3	3	3	3	5	5	3	3	3

7. Conclusion

COMSAT performed Experiments 4&5 of the AMR NS Selection Phase in the Spanish language in compliance with the test plans [1,2]. These experiments were designed to evaluate the performance of the six candidate noise suppression algorithms in the presence of three different noise types within the same experiment (Car, street, and babble noise) for different signal-to-noise ratios (SNR) and two fixed bit rates (5.9 and 12.2 kbit/s), for a total of four subjective experiments. The six noise suppression candidate algorithms are presented in this contribution using blinded designations NS1 through NS6.

The assessment method specified in the Test Plan was a modified version of the Category Comparison Rating (CCR) method defined in [3]. Here, the reference signal, instead of being the unprocessed ("Direct") speech, was the speech processed through the AMR codec without noise suppression for all conditions involving the NS candidates. In the data reported, a positive CMOS value indicates preference towards the test sample, and a negative value indicates preference towards the reference sample.

After the performance of the subjective sessions, COMSAT discovered that up to version 2.0 of the Test Plan, there was a flaw in the presentation sequences for Experiments 4 & 5. This flaw caused condition 7 (7 dB Ideal noise suppression for car noise) to be systematically paired with the incorrect reference (condition 38, instead of 39) when the B/A direction was played. The problem was discovered in time for the English-language listening laboratory (Nortel) to perform the experiments using corrected presentation sequences. However, half of the votes (96) had to be discarded for condition 7 from COMSAT's analysis in each of the four experiments in their first realization. Due to time constraints, it was possible for COMSAT to repeat only Experiments 4A, 5A and 5B. The second realization of Experiments 4A, 5A and 5B used the corrected presentation sequences, and contain the full 192 votes for condition 7. Additional measures were taken to compensate the CCR presentation direction bias for condition 7 in Experiment 4B, which could not be repeated.

As regards the ideal noise suppression scores, a trend indicates that for the car noise cases, 4 and 7 dB ideal NS were equally preferred for low SNR cases and 10 and 7 dB ideal NS were equally preferred for high SNR cases. Additionally, 7 and 10 dB cases were also equally preferred in the low SNR, 5.9 kbit/s, car noise case. In the presence of street noise, 4 and 7 dB ideal NS were equally preferred for low SNR; however, in this case, 7 and 10 dB ideal NS were also equivalently preferred. No distinction in preference was observed for the ideal NS cases with AMR at 5.9 kbit/s in high SNR street noise, while for the higher bit rate (12.2 kbit/s), 7 and 10 dB ideal NS were also equally preferred than 4 dB ideal NS. For all babble noise cases but the high SNR at 5.9 kbit/s case, all three ideal SNR cases were equally preferred.

Overall, NS 6 held the highest-ranking position in 8 out of 9 cases. NS 1, 2, and 4 also showed up in the upper ranking positions. Alternatively, NS 3 and 5 most of the time occupied the lower ranking positions. The modified CCR approach in Experiments 4&5 allowed the subjects to directly compare the AMR NS candidates with the AMR without NS under noisy background conditions. In this context, two main dimensions were of significance: impairments in speech quality and noise level (or amount of noise reduction). The test results, when compared to the ACR results presented by in the Global Analysis document [5], indicate that subjects keyed on the noise reduction parameter, rather than in the impairment dimension. Hence, the higher ranking of some candidates seem to indicate more aggressive NS solutions.

References

- [1] SMG11SQ, "Test Plan for the AMR Specification for the AMR-NS Selection Phase"; Tdoc SMG11 288/99.
- [2] SMG11SQ, "Processing Functions for the GSM AMR NS Selection Tests"; Tdoc SMG11 281R/99
- [3] ITU Rec.P.800, "Methods for Subjective Determination of Transmission Quality"; Geneva, August 1996.
- [4] COMSAT Laboratories, "Host Laboratory Processing for ETSI/AMR Noise Suppression Selection Tests", Tdoc SMG11 417/99
- [5] ARCON, "Global analysis results", Revision 10, Tdoc SMG11 S4-99470 Rev.2; Kyoto, December 1999.