Page 4
Draft prETS 300 ???: Month YYYY

SA4 VIDEO SWG conf. call on FS_5GVideo/FS_XRTraffic

 Tdoc AHVIC-270
23rd June 2020, 3-5pm CEST
Agenda item:
5
Source:
Qualcomm Incorporated
Title:
Skeleton of XR Traffic Simulation Environment
Document for
Agreement
1 Introduction
The permanent document provides and overview of the XR Traffic simulation for split rendering. THe details for the simulations are provided in Figure 4.

[image: image6.png]Overall
Quality

Pose Model/
Traces Quality per
Frame

Content Content
Encoding & 5GS Decoding &
V-T S-T :
— — Delivery s Simulation Delivery
Model Model

1

Game Configuration
and
Config

Company Input to SA4 SA4 Domain

S*-Trace

Configuration

RAN Domain

This document focusses on the simulation chain for the blue part.
2 TR26.902
In 2005, a study item was conducted with detailed characterization of video codecs and created metrics, scripts, formats and so on. I believe we can learn for our characterization from the work back then. THe results are documented in TR26.902.
TR26.902 comprises a technical report on Video Codec Performance, for packet-switched video-capable multimedia services standardized by 3GPP. This report lists the performance figures only one service scenario focusing on an RTP-based conversational service such as PSC or MTSI.

The document is organized as follows:
-
Clause 5 introduces the service scenarios, including their relationship with 3GPP services. Furthermore, it discusses the performance measurement metrics used in the present document.

-
Clause 6 (performance figures) defines representative test cases and contains a listing, in the form of tables, performance of video codecs for each of the test cases.

-
Clause 7 (supplementary information on figure generation) contains pointers to accompanying files containing video sequences, anchor bit streams, and error prone test bit streams. It also describes the mechanisms used to generate the anchor compressed video data, compressed video data exposed to typical error masks, and descriptions on the creation of error masks.

-
Annex A sketches one possible environment that could be used by interested parties as a starting point for defining a process to assess the performances of a particular video codec against the performance figures.

-
Annex B introduces details on the H.263 encoder and decoder configurations.

-
Annex C introduces details of the H.264 encoder and decoder configurations

-
Annex D introduces details on the usage of 3G file format in the present document.

-
Annex E introduces details on the usage of RTPdump format in the present document.

-
Annex F introduces details on the simulator, bearers, and dump files.

-
Annex G introduces the details on the Quality Metric Evaluation.

-
Annex H introduces the details on the Video Test Sequences.

-
Annex I provides information on verification of appropriate use of the tools provided in this document.
Parts of the simulation environment may be reused

7.1.1
Overview

The service scenario A relates to the performance of a video codec in a conversational-like environment, and especially the performance of an error-tolerant decoder can be assessed, when processing video data that has been exposed to erasures stemming from the use of the 3GPP Transport Simulator.

For the generation of the performance figures, the process as depicted in figure 1 is applied. The process assumes the availability of a Compressed Video in RTP format representing the encoding anchor. The generation of the encoding anchors is discussed in subclause 7.1.2.
The encoding anchor for test case according to table 3 is exposed to RTP packet erasures and delays by the 3GPP Transport Simulator. The latter is being controlled by command line configuration information, configuration files, and error pattern files, all summarized as Bearer Number in subclause 7.1.3. The Transport Bearer number assigned in table 3 assigned to respected test case has been applied.
The result of this process is Erasure-prone compressed video in RTP format referred to as Decoding Anchor. This file is being reconstructed by an error-tolerant video decoder to generate a possibly error-prone video ReceivedSeq in the 3GP file format. Note that the video decoder use the RTP timestamps to reconstruct the presentation times. The presentation timestamps are included in the erroneous video sequence ReceivedSeq.
The quality assessment uses the original video source OrigSeq (in .3GP format), the reconstructed video file before transmission ReconSeq (in .3GP format) as well as the reconstructed error-prone video ReceivedSeq (in .3GP format). The ReconSeq is necessary such that the quality evaluation tool understands if video frames have been dropped intentionally by the decoder of it has been lost due to transmission errors. It is also necessary to compute the PDVD.
[image: image2.png]RTPdump

Encoding
Anchor

OrigSeq

Quality
Evaluation
facp

ReceivedSeq [*

3GP

ReconSeq

A 2
Video
Decoder RTPdump Channel

3GP

Transport
Parameter,

RTPdump

Decoding

Anchor

Video <
Decoder

RTPdump

Figure 1: Environment for the generation of video performance figures for service scenario A
3 Initial Setup
3.2 Tools Used
· python3.6

· asyncio python

3.3 Running

1. Run the multiple_servers.py

2. Run the multiple_clients.py

The client server interaction is as shown below. It contains control and data communication parts. Control part is designed to include the feedback information from the client whereas the data part is designed to send the read information to client. The messages in the control part is just exemplary and after the traffic modelling and feedback API is designed, this part should be changed to postprocess the feedback.

After the above steps, .dat file is read frame by frame by multiple_servers.py and sent to the client. CSV file reading is also possible and it can be enabled by uncommenting the commented section in multiple_servers.py. By default, only the .dat file is read and sent.

NOTE: The given .dat files seem to be produced with x265 v2.3. Therefore, the reading of the .dat file is done according to this version. Please note that newer versions of x265 seem to have more information dumped to .dat file (including motion vectors, etc.). If the used version changes to generate the .dat file, FrameInformation class in multiple_servers.py should be updated accordingly.

NOTE: Currently, only one .dat file is read and sent from the server. This can be made into a loop quite easily.
4 Proposal
It is proposed to:
· Reuse parts of TR26.902.

· Setup a python-based loop between client and server to establish API communication

· Collect the relevant code in a 3GPP repository

[image: image4.png]

[image: image5.jpg]

Figure � SEQ Figure * ARABIC �4� More detailed interface definitions for simulation interfaces

- 4/4 -

[image: image1]