3GPP TSG-SA4 Audio Codec Meeting #5

March 9, 2005, Conference call

Source:
STMicroelectronics

Title:
Annexes - Audio Codec source code verification report

Annex A. Tolerance on the instrumentation

A.1 Arithmetic test on an array variable

The rule d) from the AMR-9 permanent document (cf. [2]) states that test performed on array must be preceded by a move16(). However, the AMR source code does almost never follow this rule. For instance, on amr_fix/c3_14pf.c@#207:

test();

if (dn2[i0]>=0) {

 […]

}
Therefore, in order to have comparable results with the AMR/AMR-WB wMOPS figure of merits, we suggest that the rules d) from [2] is not applied / not checked.

A.2 Return of a non-void function

When a function (which is not a basic op) returns a value which is not stored in an array, the practice in the AMR/AMR-WB C-code is to NOT use move16(). For instance,

 amr_wb/dtx.c@#274

ener32 = Dot_product12(exc2, exc2, L_FRAME, &exp);
amr_wb/dtx.c@#643

 log_en_index = Serial_parm(6, prms);
amr_wb/levinson.c@#189,

t0 = Mpy_32(Kh, Kl, Ah[i - j], Al[i - j]);
Therefore, in order to have comparable results with the AMR/AMR-WB WMops FoM, we suggest that the storage of the return value functions is accounted only if the storage is an array.

Annex B. Cases of ambiguity

B.1 Index/address initialization

Address and index initialization is usually instrumented in the AMR/AMRWB source code:

 amr_wb/c2t64fx.c@ACELP_2t64_fx()#132-133

 p0 = &rrixix[0][NB_POS - 1]; move16();

 p1 = &rrixix[1][NB_POS - 1]; move16();

amr_fix/c2_9pf.c@build_code()#356-357

 p0 = h - codvec[0]; move16 ();

 p1 = h - codvec[1]; move16 ();
 amr_fix/az_lsp.c@Az_lsp()#170

 coef = f1; move16 ();
Therefore, we suggest that index and address (pointer) initializations are always instrumented. Note that pointers, index and addresses have the width of Word16 within the ETSI basic operator library, whence the move16() basic operator in order to emulate the move.

B.2 Index/address computation

B.2.1 Introduction

The instrumentation regarding index, address or index processing is tricky and may require some interpretations from the source code in order to be properly applied.

B.2.2 Index with a constant offset

The source code from the AMR/AMR-WB codec shows the following examples where the index computation is not instrumented:

 amr_fix/levison.c@#218

t0 = L_add (t0, Mpy_32 (Rh[j], Rl[j], Ah[i - j], Al[i - j]));
The same examples can be found for simple computation of addresses that should not be instrumented:

 amr_wb/qisf_ns.c@#39, (&isf_q[8] being equivalent to isf_q+8)

indice[3] = Sub_VQ(&isf_q[8], dico4_isf_noise, 4, [...]); move16();

 amr_wb/levinson.c@#191, (&Anh[j] being equivalent to Anh+j)

L_Extract(t0, &Anh[j], &Anl[j]);

Therefore, we suggest that the index or address calculation are not instrumented (F being a constant known from the compiler, i and j being loop counters) when they match the following examples:

· array[i+K], isf_q + K
· array[i+j], Anh + j
B.2.3 Traversing an array

Index, address or index computation happens also frequently in loops (hardware or software loops) while traversing an array. In such case, it seems that the following computation of counter do not require to be explicitly instrumented.

amr_wb/qisf_ns.c@#78-81:

for (i=0; i < 4; i++)

{

 isf_q[i + 8] = dico4_isf_noise[indice[3] * 4 + i]; move16();

}
amr_fix/vad1.c@#168-173

l_temp1 = 0L; move32();

for (i=count1; i < count2; i++)

{

 l_temp1 = L_mac(l_temp1, 1, abs_s(data[ind_m*i + ind_a]));

}
amr_fix/dtx_dec.c@#158-163

for (i=1; i < DTX_HIST_SIZE; i++)

{

 Copy(&st->lsf_hist[0], &st->lsf_hist[M*i], M);

}
One reason to allow such statements not to be instrumented inside the loop is that the pointer updates proceed into a linear increment and that it is possible to recast explicitly those lines as follow:

idx = shl(indice[3], 2);

for (i=0; i < 4; i++)

{

 isf_q[i + 8] = dico4_isf_noise[idx]; move16();

 idx++;

}
amr_fix/vad1.c@#168-173

l_temp1 = 0L; move32();

idx = extract_l(L_shr(L_mult(ind_m,count1),1));

for (i=count1; i < count2; i++)

{

 l_temp1 = L_mac(l_temp1, 1, abs_s(data[idx]));

 idx += ind_m;

}
amr_fix/dtx_dec.c@#158-163

idx = 0; move16();

for (i=1; i < DTX_HIST_SIZE; i++)

{

 Copy(&st->lsf_hist[0], &st->lsf_hist[idx], M);

 idx += M;

}
It can be seen from those examples that the complexity of the loop is not impacted and that it is justified not to instrument address computation inside the block of the loop provided that the increment of the index is linear.

Apart for the vad1 (and the DTX processing which is not involved in the critical path), the AMR source code does not use the first form. Therefore, we suggest that the explicit form is preferred (i.e. the second form). If the first form is used, we suggest that dummy basic operators are used in order to take into account the overhead complexity related with the index initialization. Note that one Word16 variable should be allocated in the stack for each implicit counter when evaluating the RAM usage of the algorithm.

Note that the application of this rule does not have a significant impact on the overall complexity estimation of the algorithm since it happens outside of the critical loops.

B.2.4 Circular addressing

The source code of the AMR speech codec seems to consider that the ETSI basic operator do not provide support for circular addressing.

dtx_enc.c@284-291

/* update pointer to circular buffer */

st->hist_ptr = add(st->hist_ptr, 1);

test ();

if (sub(st->hist_ptr, DTX_HIST_SIZE) == 0)

{

 st->hist_ptr = 0; move16 ();

}
Therefore, the verification laboratory assumes that circular addressing is not supported.

B.3 Integer arithmetic

The ETSI basic operators do not provide any support for integer arithmetic. For instance, in the AMR-NB source code, the following code can be found in order to implement through the fractional fixed-point arithmetic the expression: i-5*index:

amr_fix/c2_11pf.c@299

track = sub (i, extract_l (L_shr (L_mult (index, 5), 1)));
Note that if the result of the integer multiplication is known to be lesser than 16383, then the source code could have been rewritten as:

track = sub (i, shr(extract_l (L_mult (index, 5)), 1));
B.4 Multiple conditions

Multiple conditions inside if/then/else statement can be instrumented either with a series of test(), or alternatively as one test() and a series of logic16() (resp. logic32()). The AMR source code uses exclusively the first option.

amr_fix/qua_gain.c@299

test(); test(); test();

if (sub(mode,MR102) || sub(mode,MR74) || sub(mode, MR67))

{

 […]

}
The verification laboratory recommends that multiple conditions inside if/then/else statements are instrumented with series of test().

B.5 Hardware loops

B.5.1 Purposes

Hardware loops are implemented with the for() statement. Hardware loops enables the iteration through one block for free, i.e. without the penalty associated with the initialisation of the loop counter, the end of loop condition and the increment of the loop counter.
In order to allow hardware loop, strong conditions must be fulfilled.

When those conditions are no fulfilled, the loop shall be implemented with the while() statement, which includes a test() penalty between each iteration.

B.5.2 Loop counter initialisation

The initialisation of the loop counter comes for free. This does not imply that arithmetic operations related to the initialisation of the loop counter come for free. In the following example, the loop starts at k+1:

amr_fix/pitch_fr.c@212-220

 for (i = add (*frac, 1); i <= last_frac; i++)

 {

 …

 }
Note that the arithmetic operation comes for free it involves quantity that are all known at the compilation time. In the following example, the length of the subframe is known in advance:

amr_fix/pitch_fr.c@168-172

 for (j = L_subfr - 1; j > 0; j--) {

 …

 }
B.5.3 End of loop condition

The condition for the end of loop comes for free, which is to say that it is not needed to instrument the condition with sub() and test(). This does not imply that arithmetic operations related with the computing of the end of loop index comes for free. However, the end of loop condition cannot be instrumented itself it would be evaluated at each iteration otherwise. Therefore, the verification laboratory recommends that a temporary variable is used in order to store the last index.

 j_end = sub(N,1);

 for (j = 0; j < j_end; j++) {

 …

 }
The verification laboratory admits the following alternative instrumentation (but do not recommend to use it):

 sub(N,1); /* j<N-1 */

 for (j = 0; j < N-1; j++) {

 …

 }
The verification laboratory thinks that the rule d) from [2], originally applying to if/then/else statements, should also apply to the end of loop condition. This is to say that if the value of the last index is located in an external memory (i.e. an array or a structure), a move16() basic operator should be invocated in order to take into account the transfer of the value into the loop register. This instrumentation would have the same impact as the allocation from the stack of a variable that would copy the last index value:

 move16(); /* transfer of tab[k] */

 for (j = 0; j < tab[k]; j++) {

 …

 }
B.5.4 Range conditions

The source code from the AMR speech codec does not apply constrain on the range of the index used for hardware loops. This is to say that the loop counter can start from any value and can end at any value. The source code of the AMR speech codec does not constraint the nature of test used for the end of the loop: strictly less, less or equal, equal, greater or equal, or strictly greater are all allowed (but there is a preference for strict comparison).

B.5.5 Step increment

The preferable step increment used by the loop counter is +1 or –1. Other step values are used in the AMR source code but most usually those values are known at compilation time (except for the search_10and8i40() function, but in this function, only two values are possible for the step increment: STEP and STEP_MR102 and a DSP implementation would most certainly discriminate the two cases in order to use two different hardware loops). Said differently, the step increment should be known in advance and/or the number of iteration of the loop should be known in advance in order to allow a loop to be implemented as an hardware loop.

This rule is strictly used in the AMR and AMRWB source code.

B.5.6 Loop counter

The loop counters should not be manipulated during the loop. Read access are possible but write access are not allowed.

B.5.7 Exceptional break

The usage of the break statement is allowed in order to exit from a hardware loop.

amr_fix/qgain795.c@418

 for (i = 0; i < NB_QUA_CODE; i++)

 {

 …

 test();

 if sub(g_code, gain_code)>=0) break;

 …

 }
Annex C. Suggestions for new cases

C.1 Introduction

The examples and the cases listed in this section correspond to situations that do not know comparable situations in past exercises. Adhoc suggestions are proposed for each of those cases. The verification laboratory expects that the standardisation committee will endorse the proposed suggestions.

C.2 Word8 aligned data

The source codes from the AMR/AMR-WB speech codecs do not use array of data aligned on 8-bit boundaries. Furthermore, it is believed that at the time of the design of the ETSI basic operators, 16/32-bits DSP chip would not have supported natively the access of 8-bit aligned access without mask/shift overhead.

In order to provide an instrumentation that result in figure of merits comparable with those of AMR and AMRWB, we suggest that the following operation are accounted with the following costs:

	Type of access
	WMOPS
	Instrumentation equivalent

	Move
	1
	move16();

	Set to 0
	1
	logic16();

	Read access
	2
	logic16(); logic16()

	Write access
	3
	logic16(); logic16(); logic16();

	Test
	3
	test(); logic16()

Table 3: Cost for 8-bit aligned access
The verification laboratory allows the source code to use and manipulate directly Word8 elements from arrays (since compiler will provide a proper mapping depending on the addressing capability of the DSP) but recommends that the dummy instrumentation is added in order to take into account the WMOPs complexity. In some cases, for instance when arrays of 8-bit data are copied, it may be more efficient to move data by block of Word16 elements. When optimality is searched in terms of complexity or memory, the verification laboratory suggests that the source code explicitly details the algorithm based on Word16 arithmetic and move only.

The verification laboratory considers Word8 variables allocated from the stack as Word16 variables.

C.3 Unsigned or non-saturating arithmetic

The ETSI basic operators do not provide any support for plain unsigned fractional arithmetic. This unsigned arithmetic is non-saturating. The ETSI basic operators do not provide any support for non-saturating arithmetic. The following cost are suggested:

	Type of operation
	WMOPS
	Instrumentation equivalent

	16-bit unsigned add/sub
	2
	(UWord16)L_add((Word32)a, (Word32)b)

	32-bit unsigned add/sub
	2
	(UWord32)a+(UWord32)b; L_add(0,0);

	16-bit non-sat add/sub
	2
	(Word16)L_add((Word32)a, (Word32)b)

	32-bit non-sat add/sub
	2
	(Word32)a+(Word32)b; L_add(0,0);

Table 4: Costs for unsigned or non-saturating arithmetic
The verification laboratory notes that there no possibility to implement the 32-bit unsigned addition through basic operators and recommends that dummy basic operators are used in order to take into account the wMOPS complexity.

The verification laboratory is not aware of any workaround that would be used in the AMR or AMRWB source code in order to simulate the unsigned or non-saturating arithmetic through the ETSI basic operators.

Note that the suggested costs are not related with the real capability of DSP and should not be compared with the ITU-T initiative to complete and re-evaluate the complexity of the basic operators. Those costs are suggested only in order to provide figure of merit that would scale with those of the AMR and AMRWB speech codec.

C.4 switch/case statements

Formally, switch/case statements are equivalent to multiple if/then/else statements. However, one difference with multiple if/then/else statements, is that the test applies to the same variable. Therefore, the verification laboratory suggests that it is not necessary to count the sub() penalty that should come for each test comparison and that such statement should be instrumented as follow:

 switch (value) {

 case a:

 test();

 [...]

 break;

 case b:

 test(); test();

 [...]

 break;

 case c:

 test(); test(); test();

 [...]

 break;

 [...]

 default:

 test(); test(); ... test();

 [...]

 break;

 }
The verification laboratory is aware that the AMR and AMRWB source codes hardly use switch/case statements and replaces such kind of occurrence with multiple if/then/else statements. Doing so, the AMR and AMRWB source codes do not save the sub() penalty as suggested here. However, the verification laboratory believes that those occurrences happen in no critical section of code from the AMR and AMRWB source code and therefore would not impact significantly the final figure of complexity.

C.5 Double indirection

The verification laboratory has not required doubled indirection to be specifically instrumented despite it seems that double indirection should require additional address register allocation and initialisation when compiled on a DSP.

The verification laboratory believes that double indirection is not heavily used in the AMR and AMR-WB source code and that, therefore, those source codes do not provide any hint on how those statements should be instrumented.
� Editor: Stéphan Tassart

STMicroelectronics,

Email: stephan.tassart@st.com

