Verification Meeting, Nuremberg, Germany, 1-3 June 2004
AHAUC-024

Source:
Ericsson, Nokia, VoiceAge, Coding Technologies, STMicroelectronics

Title:
Revised verification cross-check report of the candidates for the
PSS/MMS audio codec selection

Document for:
Information and Approval

Introduction

During the Audio Adhoc Meeting at SA4#31 [2] the following tasks for the audio codec verification phase [1] were appointed to a cross-check meeting between the candidates:

1. Partial Complexity Analysis to check for Design Constraints: the candidates shall cross-check together the consistent application of operators

2. Verification of the format of the C-code
3. Verification of the error insertion device (EID) used for testing: the candidates shall check the error concealment, it shall rely on lost frame information only
This document holds the report on the work carried out at the meeting of the candidates to achieve the above goals for the two audio codec candidates Extended AMR-WB and Enhanced aacPlus.

Opening of the Meeting

The meeting started on June 1st, 2004, 10:00 am. Mr. A. Ehret welcomed the attendees to Nuremberg. The following participants were present:

· Joachim Thiemann (VoiceAge)

· Daniel Enström (Ericsson)

· Jari Mäkinen (Nokia)

· Andreas Ehret (CT)

· Klaus Peichl (CT)

· Gustavo Hoffmann (CT)

· Andreas Schneider (CT)
On Thursday, June 3rd, 2004, in addition Mr. Stephan Tassart from STMicroelectronics joined the group to review the work carried out by the group and the meeting report.
Terminology

Throughout this document the following terms apply:

· submitted executable: the executable (or zip archive), that was submitted to the ETSI secretary including encoder, decoder and possibly some scripts encapsulating the exes.

· selection executable: the executable (or zip archive) which was sent to the ETSI secretary, however provided from the candidate rather than from the ETSI secretary.

· verification executable: the executable compiled from the source code on which the complexity verification is done. It has to produce bit exactly the same results as the submitted/selection executable. Further it must be able to re-produce the test material used in the selection tests.
Meeting report

Identification of packages by MD-5 checksums

· Enhanced aacPlus source code zip file:
MD-5 checksum:

b4513e0732fe463de69841f33afd332a
Filename:

3GPP_enhanced_aacPlus_src_310504.zip

· Enhanced aacPlus selection executable zip file
MD-5 checksum:

02733da585aec9adfce3cbe6e021c72f
Filename:

CT-Submission_2003-10-30.zip

· Extended AMR-WB source code zip file
MD-5 checksum:

bfa6823e8e4946a4416af4247b381829
Filename:

AMR_WB+_verification_source_code.zip

· Extended AMR-WB selection executable zip file
MD-5 checksum:

d94963e157937eb3336a08d22c3a
Filename:

AMRWB+_for_Selection.zip

Compile verification executables

For both candidates the following procedural steps have been taken, all attendees have followed all steps jointly on a computer attached to a projector screen.

1. Copy the source code package for verification in a clean directory on the local hard drive

2. Extract the zip file

3. Compile all required executables

4. Put all executables into a the verification executable zip package

5. Calculate the MD-5 checksum for this verification executable zip package

· Extended AMR-WB verification executable zip file
MD-5 checksum:

af838ce9f5060cca92d4fa7a96cc5ca5
Filename:

AMRWB+_for_Verification_Exe.zip
· Enhanced aacPlus verification executable zip file
MD-5 checksum:

e7a2b774296b3434a90c04e7d58b2c8c
Filename:

3GPP_enhanced_aacPlus_verification_010604.zip

Verification of bit exactness of selection and verification executables

For verification of bit exactness of the selection and verification executables it was agreed that a test on one test item, but covering all test cases, would be sufficient as a sanity check to be carried out at the complexity verification meeting. The item sbm_sm_x_3_org.wav was chosen for this sanity check. A complete bit exactness verification over all test items and all test cases will be carried out by Siemens.

For Extended AMR-WB a 4DOS/NT batch script that runs the codec over all test cases and calculates a CRC over the output wave files was jointly set up. The scripts are found in the attached zip file. Bit exactness was proven by running the scripts. This was done for the selection and the verification executables by verifying that the CRC values are identical.

For enhanced aacPlus a similar Bash script that runs the codec over all test cases and calculates a CRC over the output wave files was jointly set up. The scripts are found in the attached zip file. Bit exactness was proven by running the scripts. This was done for the selection and the verification executables by verifying that the CRC values are identical.

Note: a bug is present in the selection enhanced aacPlus encoder executable. An uninitialized variable may cause the encoder to not run the SBR tool on some computers which results in non bit exact behavior. The bug did not manifest itself at the processing labs, but may be encountered by the verification lab. At the verification meeting the script had to be run on two computers, and the executables were found to be bit exact on the second test machine.

The two packages of the verification executables zip have been provided to Siemens.

Verification of the instrumentation of the source code

The verification of the instrumentation of the source code followed the outlined procedure below.

1. Copy the source code package for verification in a clean directory on the local hard drive

2. Verify the correct identity with the MD-5 checksum

3. Extract the zip file

4. Enable instrumentation in flc.h

5. Compile all required executables

6. Modify test scripts to output separate flc-results for each test case

7. Run modified test scripts with allcat.wav for all test cases

8. In parallel, start file-by-file check of instrumentation completeness (check file by file if instrumentation is done on every line of code, including start/end markers for every function)

9. Verify worst case PROM and wMOPS test case, check wMOPS/PROM versus numbers provided by the candidates at SA4#30; [3], [4]
10. Identify hot-spots which deserve a closer look and need more detailed verification of the instrumentation

11. Check RAM and ROM versus numbers provided by the candidates at SA4#30; [3], [4]
The first seven steps of the procedure were performed with all participants verifying the validity of each step. The identity of the source code was validated by examining the MD-5 checksum for both codecs. The modified testscripts with separate storage of each FLC output were created and jointly agreed. While running the complete test including all test cases a bug was found for the Extended AMR-WB encoder which lacked a call to FLC_sub_end in one function. This function was only called when running the encoder in the usecase B mode. The tests which used that function were the B1 and B2 tests. After finding this bug, a bugfix was introduced in the code and a re-compilation was done before re-starting the B1 and B2 tests. The whole process was agreed by the group.

Instrumentation completeness

Before step 8, the group split in two. One group started the verification of the instrumentation completeness of Extended AMR-WB and the other did the same for enhanced aacPlus. Both codec proponents have used certain assumptions regarding what was to be instrumented and what was not. The view of the respective proponent is reported below as well as what functions that were found to lack instrumentation by the group.

Enhanced aacPlus

The initialization routines were instrumented although not significantely influencing the total wMOPS count, since they add to the program ROM. The functions that lacked instrumentation are shown in the table below.

	Function
	File
	Notes

	map34IndexTo20
	ps_bitdec.c
	not used during testing

	sbrGetDirectionControlData
	env_extr.c
	

Extended AMR-WB

Some of the initialization routines were not instrumented as well as the copy state functions. The functions that lacked instrumentation are shown in the table below.

	Function
	File
	Notes

	copy_coder_state
	Cd_cp_state.c
	not used during testing

	copy_decoder_state
	Dec_cp_state.c
	not used during testing

	init_coder_amrwb_plus
	Cod_main.c
	

	init_decoder_amrwb_plus
	Dec_main_s.c
	

	init_bass_postfilter
	bass_pf.c
	

	init_tcx_stereo_decoder
	dec_tcx_stereo.c
	

	init_decoder_hf
	dec_hf.c
	

	init_decoder_lf
	dec_lf.c
	

	init_coder_hf
	cod_hf.c
	

	init_coder_lf
	cod_lf.c
	

	initClassifyExcitation
	nclass.c
	

File I/O

Both codec proponents have assumed that file I/O is not to be instrumented but there were some differences regarding what parts that belong to that category. The instrumentation of enhanced aacPlus does not take into account file I/O, since that is assumed to lie outside the tested codec algorithm. This includes the pre-compiled libisomedia.dll (the ISO media library) and the audio wave file library. The instrumentation of extended AMR-WB did take the decoder bit-stream reading into account. The table below shows what parts have been instrumented although they belong to the file I/O category and no instrumentation would have been required.

	Operation
	File
	Codec

	Clipping of output samples
	main.c
	e aacP dec

	interleave samples
	main.c
	e aacP dec

	input file data conversion
	read_dat.c
	WB+ enc

Conclusion

It was found by the group that the completeness of the instrumentation was found to be sufficient. The overall effect of adding the missing instrumentation would be a slight increase in program ROM.
Instrumentation accuracy

Comparison with justification document

In step 9, the FLC output was examined for each test case. The highest figure for the respective decoder and encoder was compared towards the reported figures in the justification documents provided at SA4#30. The figures were found to be reasonably accurate but for some cases an increase compared to the justification documents [4], [3] was observed.

	Executable
	Test case
	Justification
	Verification

	Extended AMR-WB, encoder usecase A
	A4 (24 kbps stereo)
	62.0 wMOPS
	67.1 wMOPS

	Extended AMR-WB, encoder usecase B
	B2 (18 kbps stereo)
	37.7 wMOPS
	41.7 wMOPS

	Extended AMR-WB, encoder usecase B
	B2 (18 kbps stereo)
	6.8 k basic ops
	7.7 k basic ops

	Extended AMR-WB, decoder
	B4 (24 kbps stereo FER)
	4.9 k basic ops
	5.4 k basic ops

For enhanced aacPlus, no increase compared to the justification document [3] was observed. It should be noted that all figures of the verification executables were well below the respective design constraints [5], [6]. The deviations can be explained by more accurate instrumentation which was completed after the submission of the justification document.

General remarks on the instrumentation interpretation

In step 10, both codecs were examined for instrumentation accuracy for a selected set of functions which the cross-checking proponent could choose freely. The main focus for the group was to examine critical functions, i.e. functions that significantly contributed to the total complexity.

When examining the instrumentation of the AMR-WB core the following notes were made:

· It was noted that the instrumentation of the reference C-code (core floating-point AMR-WB) against which the complexity of both participants is compared, can also be improved. However, it was felt that the design constraints would not be modified in such a way that any candidate would break them. Some participants felt it would be useful to update the document S4-030302 "Complexity Assessment of the AMR-WB Floating-point Source Code" accordingly.
General remarks common for both codecs.

· Loops in general are expected to fulfil strict conditions in order to be counted as a LOOP. The first condition is that there is a single regular incrementing or decrementing counting variable. The second, that the terminating condition of the loop is based on a constant comparison with respect to the counting variable. Neither codec adheres to that definition in all cases.

· Different interpretation of MAC operation in some circumstances. In extended AMR-WB, multiply and subtract is interpreted as a single MAC, whereas enhanced aacPlus instrumented such operation as a MULT and an ADD. It was agreed that the interpretation as a single MAC is preferred.

· Extended AMR-WB has instrumented function calls with the weight including counting the return value. In the AMR-WB part of extended AMR-WB as well as in the enhanced aacPlus, the return value was not counted.

When examining the instrumentation of extended AMR-WB the following notes were made.

· Some negations are not counted.

· Where a variable is initialized in the variable declaration block of the function, the required MOVE is not instrumented.

· Extended AMR-WB does not consistently count every write that is via a pointer, only direct writes to arrays are always counted. A correction of the inconsistent instrumentation leads to a slight increase in wMOPS and pROM which the group found neglible.

When examining the instrumentation of enhanced aacPlus the following notes were made.

· Occasionally, pointer increments which are explicit (rather than auto-increments) are not counted.

· The function cfftn, used in both the encoder and the decoder, is implemented partially using the double data type, but the operations on those variables is instrumented as single precision operations. This is regarded as a implementation bug and it is expected that this function will be replaced with a single precision implementation in a forthcoming change request. The enhanced aacPlus proponent does not expect an impact on quality. The group estimates that if the instrumentation were changed to reflect the current implementation it would increase the stated complexity by approximately 0.8 wMOPS for mono and parametric stereo modes and 1.6 wMOPS for stereo. This would not affect compliance with the design constraints [5].

· In the function IIRfilter in the encoder a correction of the instrumentation leads to a slight increase in wMOPS and pROM which the group found neglible.

Conclusion

It was found by the group that the accuracy of the instrumentation was found to be sufficient for checking the compliance of the implementations against the design constraints. The overall effect of correcting the instrumentation according to the suggestions above is expected to result only in a slight increase in wMOPS and pROM.

Memory verification

In step 11, the group examined the memory consumption including both RAM and ROM for both candidates. Both codec proponents explained the methods used for finding the critical path for the stack usage and the respective methods were found to be valid by the group. Both methods were applied over all test cases and the maximum call stack was evaluated for the worst case.
For extended AMR-WB a summary of the RAM and ROM usage was provided. For finding the critical path an in-house tool had been used which worked in a similar way as the FLC tool. The function call path that allocated the highest amount of dynamic RAM was stored and the path that allocated the highest amount of dynamic RAM during the execution was presented. Using that path, a manual calculation summing the sizes of all variables allocated in that path was done. The stack allocated for the arguments of the functions was originally not taken into account. However, since the arguments only contained single variables and pointers, the additional size to the critical path was found to be in the order of 40 words only. For some cases an increase compared to the justification document [4] was observed as reported below:
	Executable
	Test case
	Justification
	Verification

	Extended AMR-WB, encoder
	usecase A
	25.9 kWords RAM
	27.8 kWords RAM

	Extended AMR-WB, encoder
	usecase B
	20.4 kWords RAM
	23.9 kWords RAM

	Extended AMR-WB, decoder
	
	11.6 kWords RAM
	12.2 kWords RAM

	Extended AMR-WB, decoder, encoder
	
	14.6 kWords ROM
	15.8 kWords ROM

It should be noted that all figures of the verification executables were well below the respective design constraints [5], [6]. The deviations can be explained by more accurate instrumentation.

For Enhanced aacPlus the summary of the RAM and ROM usage was provided through the draft ANSI-C specification document [7]. The stack of the enhanced aacPlus was analysed dynamically with the help of run-time Unix tools. From those Unix tools, the critical path was extracted. Using that path, a manual calculation summing the sizes of all variables and function call arguments allocated in that path was done. A detailed description of the tool can be found in Annex A. No increase compared to the justification document [3] was observed.
Conclusion

It was found by the group that the methodology to check the compliance of the implementations against the design constraints for the memory consumption was sufficient.

Verification of the error insertion device

The error insertion devices of both codecs have been examined and it has been verified by the group that no additional information is used when concealing lost frames apart from the frame lost indicator.

Overall Conclusions

The verification group has performed the following tasks.

1. Partial Complexity Analysis to check for Design Constraints: the candidates have cross-checked together the consistent application of operators

2. The format of the C-code has been verified.
3. Verification of the error insertion device (EID) used for testing: the candidates have checked the error concealment, it relied on lost frame information only.
The deviations found compared to the justification documents would not in any way make any of the codecs break the design constraints.

There are a number of items in the provided report where the participants had a different view on how to implement the complexity counters. All such items have been reported and a common understanding of how to instrument certain parts of the respective code has been developed for all critical sections.

Further, it is proposed that an additional step is included in the characterization phase in order to clean up the instrumentation as outlined above and achieve a better estimation of the wMOPS and pROM complexity.

Annex A - Overview of the maximum stack depth measurement methodology as used by CT

The measurement of the maximum stack depth required by a program can be accomplished by utilizing tools from the POSIX threads library. In general, this method of stack depth measurement can be divided into two steps. The first step is to make a few modifications to the source code of the main function, while the second step is to run the program a few times until the maximum stack depth has been determined.

The changes required to the source code are:

· all code which has to be taken into account for the maximum stack depth has to be moved to a dedicated function. This function must not call parts of the code, which should not be counted towards the maximum stack depth.

· The main function must be written in a way, such that all functions are called in their appropriate order. However, instead of true function calls, these functions have to be called as threads.

· Before calls to these threads, the maximum stack depth they are allowed to use must be restricted to a value they are certain not to exceed. This can be done by setting a thread attribute, using the function pthread_attr_setstacksize().
· The first instruction that has to be executed within each thread is the allocation of a certain amount of extra stack, for instance via the C-library function alloca() (This is necessary, since pthread_attr_setstacksize() can only set the stacksize to integer multiples of 4096 bytes)

Each such thread will now be interrupted with a segmentation fault, as soon as the sum of stack allocated via alloca() and the amount allocated dynamically exceeds the hard limit, which was set via pthread_attr_setstacksize(). So the difference between the amount of stack granted to the thread via pthread_attr_setstacksize() and the maximum amount of stack, which can be allocated via alloca() without a segmentation violation is the maximum stack depth required by the program. The critical path (i.e. the call-tree resulting in this maximum stack depth) can be obtained by analysing the back trace of the program at the point in time it receives the segmentation violation signal with the amount of stack allocated via alloca() increased by one.
References

[1] S4-040333 “Audio Codec Verification Phase Items”, SA4#31

[2] S4-040353 “Draft Report of Audio Codec Ad-Hoc Meeting during SA4#31”

[3] S4-040040 “Justification report of having met the design constraints in the course of the 3GPP audio codec selection process for the enhanced aacPlus audio codec”, SA4#30
[4] S4-040067 “Compliance to design constraints for AMR-WB+ and PSS/MMS low-rate audio codec candidate”, SA4#30
[5] S4-030433 “Design constraints for PSS/MMS low bit-rate audio codec selection”.

[6] S4-030358 “AMR-WB+ design constraints”.
[7] Draft version v.0.0.1 TS 26.410 “ General audio codec audio processing functions;
Enhanced aacPlus general audio codec; ANSI-C code;”

1
8

