TSG SA4 SQ SWG Ad-hoc telco
Tdoc AHQ (16)109
March 22nd, 2016

Source:
Qualcomm, Incorporated
Title:
Improvements to LTE delay and loss profiles in 3GPP TS 26.132
Document for:
Discussion
Agenda Item:
-
1.
Introduction
Contribution S4-160140 [1] raises some concerns with the existing delay and loss profiles in 3GPP TS 26.132 [2] Annex E:
a) The profiles are intended to simulate the UE1 to UE2 delay, including the scheduling delays, yet several packets arrive at the exact same time in UE2, which is not a possible situation in the DRX 20ms profile (there is no 2-pkt bundling in downlink).
b) With DRX 40ms, two packets should be arriving to UE2 every 40ms, yet this is not observed in profiles 2 and 3 (for some instants in time, more than 2 packets arrive and for some, less than 2).
c) Out of order packet arrival is observed for all profiles. This may need review as, with the current limited EPC jitter, out-of-order arrival may not be expected.
2.
Multiple packets arriving at the same time in UE2 with DRX 20ms condition.

Concern a) is shown in Table 1. Throughout the profile there are several instances where two packets arrive at the same time, a situation which is not representative of DRX 20ms.
Table 1 - Table showing packet arrival times with current DRX 20ms profile (condition 1)
[image: image1.emf]Frame UE1_encoding dly_cond_1 [ms] UE2_arrival [ms]

1 20 50 70

2 40 50 90

3 60 50 110

4 80 50 130

5 100 50 150

6 120 30 150

3.
More than two packets arriving at the same time in UE2 with DRX 40ms condition.
Concern b) is shown in Table 2. Throughout the profile there are several instances where more than two packets arrive at the same time, a situation which is not representative of DRX 40ms.
Table 2 - Table showing packet arrival times with current DRX 40ms profile (condition 2)
[image: image2.emf]Frame UE1_encoding dly_cond_2 [ms] UE2_arrival [ms]

1 20 90 110

2 40 70 110

3 60 50 110

4 80 70 150

5 100 90 190

6 120 70 190

4.
Out of order packet arrivals
Concern c) refers to out-of-order packet arrivals at UE2. Some test equipment vendors have previously raised this issue to the source as being generally unexpected for VoLTE. The source agrees that this behaviour should not be happening with the existing profiles. Indeed, for all conditions in 3GPP TS 26.132 Annex E, the difference between the minimum and maximum delay at the EPC is less than one frame. It results that out-of-order packet arrival should not be present in the profiles.
Table 3 - Table showing packet arrival times with current DRX 40ms profile (condition 3)
[image: image3.emf]Frame UE1_encoding dly_cond_2 [ms] UE2_arrival [ms]

25 500 90 590

26 520 70 590

27 540 90 630

28 560 30 590

29 580 90 670

30 600 30 630

31 620 90 710

32 640 30 670

5.
Solution
The solution to the problems observed appear to be:

a) Add a verification step in the simulation to ensure that, if more than 1 packet arrive to the UE2 at the same time instant (>2 for DRX40), the packet will wait for the next scheduling opportunity. Currently, such check seems to be missing.
b) In the case of DRX40, apply the HARQ re-transmissions to the 2 packet bundle. HARQ is currently being applied to individual packets.
The Source provides proposed amendments to the code to address these issues in an Appendix to this contribution. The Appendix also provides the code changes needed to indicate a packet loss as -1, instead of 0 as this was requested by some companies.
Profiles were regenerated with the amended code using the same input parameters and seed as available in [2] Annex E. Tables 4 to 6 show excerpts from the new profiles, for the same sections used in Tables 1 to 3.
Table 4 - Table showing packet arrival times with new DRX 20ms profile (condition 1)
[image: image4.emf]Frame UE1_encoding dly_cond_2 [ms] UE2_arrival [ms]

1 20 50 70

2 40 50 90

3 60 50 110

4 80 50 130

5 100 50 150

6 120 50 170

Table 5 - Table showing packet arrival times with new DRX 40ms profile (condition 2)
[image: image5.emf]Frame UE1_encoding dly_cond_2 [ms] UE2_arrival [ms]

1 20 90 110

2 40 70 110

3 60 90 150

4 80 70 150

5 100 90 190

6 120 70 190

Table 6 - Table showing packet arrival times with new DRX 40ms profile (condition 3)
[image: image6.emf]Frame UE1_encoding dly_cond_2 [ms] UE2_arrival [ms]

25 500 90 590

26 520 70 590

27 540 90 630

28 560 70 630

29 580 90 670

30 600 70 670

31 620 90 710

32 640 70 710

6.
Analysis and Conclusion
Histograms comparing the packet delay distribution with the current and proposed codes are provided in Figure 1. Figure 1 shows that:

a) Jitter is reduced with the new profiles. This is due to the effect of the eNodeB2 gating the packets according to its schedule and the HARQ transmissions operating on the 2-packet bundle.

b) The maximum delay is the same between the current and proposed profiles.

c) The packet loss (denoted by zero) is the same between the current and proposed profiles.

These observations result that no change to the actual requirements are necessary with the updated profiles (since both maximum delay and packet loss are consistent between the old and the new profiles). However, for the sake of technical accuracy of 3GPP specifications, the source invites companies to review the proposed code changes towards a CR for the SA4#88 Memphis f2f meeting.
Figure 1 - Histogram of packet delay distribution for current code and with proposed fixes
[image: image7.emf]0 20 40 60 80 100 120

Frame Delay from UE1 to UE2 [ms]

0

2000

4000

6000

8000

N

u

m

b

e

r

o

f

f

r

a

m

e

s

Condition 1 - PLER=0.2375%

0 20 40 60 80 100 120

Frame Delay from UE1 to UE2 [ms]

0

2000

4000

6000

8000

N

u

m

b

e

r

o

f

f

r

a

m

e

s

Condition 1 - code fix - PLER=0.2375%

0 20 40 60 80 100 120

Frame Delay from UE1 to UE2 [ms]

0

2000

4000

6000

8000

N

u

m

b

e

r

o

f

f

r

a

m

e

s

Condition 2 - PLER=0.2625%

0 20 40 60 80 100 120

Frame Delay from UE1 to UE2 [ms]

0

2000

4000

6000

8000

N

u

m

b

e

r

o

f

f

r

a

m

e

s

Condition 2 - code fix - PLER=0.3%

0 20 40 60 80 100 120

Frame Delay from UE1 to UE2 [ms]

0

2000

4000

6000

8000

N

u

m

b

e

r

o

f

f

r

a

m

e

s

Condition 3 - PLER=2.6375%

0 20 40 60 80 100 120

Frame Delay from UE1 to UE2 [ms]

0

2000

4000

6000

8000

N

u

m

b

e

r

o

f

f

r

a

m

e

s

Condition 3 - code fix - PLER=2.7%

7.
Appendix - Amended Code
function [UE1_UE2_dly,UE1_eNB2_dly,plr,comp_e2e,comp] = ...
 VoLTEDelayProfile_vPHY(BLER_tx, BLER_rx, max_tx, max_rx, drx_cycle_length, mis_eNB1_eNB2, max_net_delay, min_net_delay, nFrames, seed)
% BLER_tx : The block error rate in uplink.
% BLER_rx : The block error rate in downlink.
% max_tx : The maximum number of transmission attempts in uplink.
% max_rx : The maximum number of transmission attempts in downlink.
% drx_cycle_length : The length of the DRX cycle
% mis_eNB1_eNB2 : Scheduling time mis-alignment between eNB1 and eNB2
% max_net_delay : The maximum network delay between eNB1 to eNB2
% min_net_delay : The minimum network delay between eNB1 to eNB2
% nFrames : The number of frames for the simulation
% seed : Random number generator seed
rng(seed);
UE1_UE2_time = zeros(nFrames, 1);
UE1_eNB2_time = zeros(nFrames,1);
eNB1_eNB2_dly = round(min_net_delay + (max_net_delay-min_net_delay).*rand(nFrames,1));
ack1 = zeros(nFrames,1);
ack2 = zeros(nFrames,1);
wall_clock = 20;
frame = 1;
frame_size = 20;
simulationTime = nFrames*frame_size;
% Calculate the delay from UE1 speech encoder delivery to eNB2. If
% transmission to eNB1 is not successful after max_tx attempts, dly = 0 (packet loss)
while (wall_clock<=simulationTime)
 % Set the scheduling time
 if drx_cycle_length == 0
 UE1_scheduling_time=wall_clock;
 else
 UE1_scheduling_time=ceil(wall_clock/drx_cycle_length)*drx_cycle_length;
 end
 % Add the tx effect for the scheduling time
 n=0;
 eNB1_receive_delay = 0;
 while n < max_tx
 if (rand(1) < BLER_tx)
 eNB1_receive_delay = eNB1_receive_delay+8;
 n=n+1;
 ack=0;
 else
 ack=1;
 n=max_tx;
 end
 end
 while (wall_clock<=UE1_scheduling_time)
 % [ANDRE] If drx_cycle_length==40, make sure that two packets are
 % transmitted simultaneously and HARQ is applied to the two-packet bundle
 if (drx_cycle_length==40)
 UE1_eNB2_time(frame)=ack*(UE1_scheduling_time+eNB1_receive_delay+eNB1_eNB2_dly(frame));
 UE1_eNB2_time(frame+1)=ack*(UE1_scheduling_time+eNB1_receive_delay+eNB1_eNB2_dly(frame+1));
 wall_clock=wall_clock+2*frame_size;
 ack1(frame)=ack;
 ack1(frame+1)=ack;
 frame=frame+2;
 else
 UE1_eNB2_time(frame)=ack*(UE1_scheduling_time+eNB1_receive_delay+eNB1_eNB2_dly(frame));
 wall_clock=wall_clock+frame_size;
 ack1(frame)=ack;
 frame=frame+1;
 end
 end;
end
% Translate arrival time to packet delay for UL simulation
wall_clock = frame_size*(1:nFrames)';
UE1_eNB2_dly = max(-1, UE1_eNB2_time-wall_clock);
% Sort for monotonic arrival time to DL for simulation
[UE1_eNB2_time,monotonic_index]=sort(UE1_eNB2_time);
% Calculate the delay from eNB2 to UE2 (only for those packets that
% successfully arrived at the eNB2!). If transmission to UE2 is not
% successful after max_tx attempts, dly = 0; (packet loss)
frame = 1;
UE2_scheduling_time=mis_eNB1_eNB2;
while frame<=nFrames
 % Add the rx effect for the scheduling time
 n=0;
 eNB2_transmit_delay = 0;
 while n < max_rx
 if (rand(1) < BLER_rx)
 eNB2_transmit_delay = eNB2_transmit_delay+8;
 n=n+1;
 ack=0;
 else
 ack=1;
 n=max_rx;
 end
 end
 % [ANDRE] If drx_cycle_length==40, make sure that two packets are
 % transmitted simultaneously and HARQ is applied to the two-packet
 % bundle
 if (drx_cycle_length==40)
 while ((frame+1<=nFrames)&&(UE1_eNB2_time(frame+1)<UE2_scheduling_time))
 if (UE1_eNB2_time(frame)==-1)
 UE1_UE2_time(frame)=-1;
 UE1_UE2_time(frame+1)=-1;
 else
 UE1_UE2_time(frame)=ack*(UE2_scheduling_time+eNB2_transmit_delay);
 UE1_UE2_time(frame+1)=ack*(UE2_scheduling_time+eNB2_transmit_delay);
 % [ANDRE] Check to see that the transmission time is not the same as the last 2-packet bundle
 % [ANDRE] If it is, wait for next scheduling opportunity
 if ((frame>2)&&(UE1_UE2_time(frame) == UE1_UE2_time(frame-1))&&(UE1_UE2_time(frame-1)~=-1))
 UE1_UE2_time(frame)=UE1_UE2_time(frame)+drx_cycle_length;
 UE1_UE2_time(frame+1)=UE1_UE2_time(frame+1)+drx_cycle_length;
 end
 end
 ack2(frame)=ack;
 ack2(frame+1)=ack;
 frame=frame+2;
 end
 else
 while ((frame<=nFrames)&&(UE1_eNB2_time(frame)<UE2_scheduling_time))
 if (UE1_eNB2_time(frame)==-1)
 UE1_UE2_time(frame)=-1;
 else

 UE1_UE2_time(frame)=ack*(UE2_scheduling_time+eNB2_transmit_delay);
 % [ANDRE] Check to see that the transmission time is not the same as the last 2-packet bundle

 % [ANDRE] If it is, wait for next scheduling opportunity.
 if ((frame>1)&&(UE1_UE2_time(frame) == UE1_UE2_time(frame-1))&&(UE1_UE2_time(frame-1)~=-1))
 UE1_UE2_time(frame)=UE1_UE2_time(frame)+drx_cycle_length;
 end
 end
 ack2(frame)=ack;
 frame=frame+1;
 end
 end
 % Update the scheduling time
 UE2_scheduling_time=UE2_scheduling_time+drx_cycle_length;
end
% Re-order for orignal transmit order
UE1_UE2_time(monotonic_index) = UE1_UE2_time;
% Translate arrival time to packet delay
wall_clock = frame_size*(1:nFrames)';
UE1_UE2_dly = max(-1, UE1_UE2_time-wall_clock);
% Set compensation values
if drx_cycle_length==0
 comp_e2e=min_net_delay;
 comp=min_net_delay;
else
 comp_e2e=min(UE1_UE2_dly(UE1_UE2_dly>0));
 comp=min(UE1_eNB2_dly(UE1_eNB2_dly>0));
end
% Calculates the overall packet loss from UE1 to UE2
pl=0;
for frame=1:nFrames
 if UE1_UE2_dly(frame)==0;
 pl=pl+1;
 end
end
plr=pl/nFrames;
8.

References
[1]
S4-160140 “Issues with Existing Delay Profiles” Qualcomm Incorporated, 3GPP TSG SA WG4 #87 - January 2016
[2]
3GPP TS 26.132 (version 13.1.0) “Speech and video telephony acoustic test specifications

Page: 1/7

Page: 7/7

