3GPP TSG PSM Ad-hoc on DIMS
 Tdoc S4-AHP342
14th March-16th March, 2007

Paris, France

Source:

Streamezzo, China Mobile, Samsung
Title:
Supporting document to S4-AHP328
Document for:
Discussion
1. Introduction

This contribution intends to provide explanations on the proposed addition to the DIMS specification, detailed in document S4-AHP328, and should be used as a complement to S4-AHP328.
2. Namespace and version

Introduction

This section deals with the problem of namespace and version.

Rationale

In SVG, the svg element has an attribute called version and an attribute called baseProfile. Typically, the baseProfile is intended to be “tiny” for SVGT1.2, and the version is intended to be “1.2”. There is a case for modifying one or both of these parameters. Indeed, the baseProfile and version definitions are:

version = "1.0" | "1.1" | "1.2"
Indicates the SVG language version to which this document fragment conforms.

baseProfile = "profile-name"
Describes the minimum SVG language profile that the author believes is necessary to correctly render the content.
For the namespace discussion, we propose to use the generic rule which has been recommended by the SVG WG: keep the original namespace unless incompatible modifications are made.

Conclusion

It seems that we may want to keep 1.2 as version, but define a new version of the baseProfile since it is the “minimum [version] … necessary to correctly render the content”. Such a value could be “rich-media”. However, extension conformance requirements do not allow this. We probably need to ask the SVG WG to add this for us. In case they refuse, we need to define a new attribute rich-media:baseProfile = “1.0” or rich-media:version = “1.0”.
For the namespace discussion, we propose to use the following generic rule, which has been recommended by the SVG WG:

· For an element or attribute which is adopted as is, or subseted, or requested to be adopted, or with minor modifications that the original standardisation group accepts to align with, keep the original namespace.

· For an element with substantial modifications, incompatible with the original element, to which the original working group does not intend to align, or for a new element we propose to adopt the rich-media namespace.

3. Sync references

Introduction
This section summarizes the discussion on synchronization specification and proposes a way forward. One additional problem with the current spec is that the scope of this problem is wider than just update(Source). The problem is present on all the media elements, including video, audio, animation and update(Source).
Use case
There is a video with associated audio, streamed by a server. The user has the possibility to dynamically add or remove subtitles in one of four possible languages. The subtitles are packaged in update streams, and inserted in the main scene either with an animation or updateThing element. The actual transport of the subtitle stream is not relevant: subtitles are usually quite small, and could be downloaded over HTTP.

Discussion
Using locked on the scene:

The streaming session has a strong probability of going into rebuffering, and we do not want the scene to be frozen during rebuffering. Hence, all streams cannot be locked with respect to the scene, or to the audio.

Using SMIL time containers:

This would require the adoption within DIMS of the par element, and would come in with a host of implications which would be very difficult to profile out cleanly. The solution would be to: create a par element, in which only the video and the animation or updateThing elements are placed. The video element would be syncMaster = “true”. The par would be syncBehavior = “independent”. The video and the animation or updateThing elements would be syncBehavior = “locked”.
Using lsr:syncRef:

The video element refers to the video+audio stream and declares itself syncBehavior = “independent” in order to leave the scene able to introduce a “please wait” animation for example. The animation or updateThing element declares itself synchBehavior = “locked” and lsr:syncReference points to the video element. This way of declaring synchronization dependencies is compatible with all MPEG-related implementations.

Using the feature on all media elements:

The above example features lsr:syncReference present on an updateSource element. A similar example with audio and video played by separate elements would require lsr:syncReference to be set on the video element. Other examples can be found where the lsr:syncReference should be placed on an audio or animation element. In the same sense that smil:clipBegin and smil:clipEnd are relevant on all media elements, lsr:syncReference should be allowed on all media elements.

Conclusion

From the implementation cost perspective, it is obvious that the lsr:syncRef is better. Since the SVG WG has repeatedly refused SMIL Time Containers in SVG Tiny, we believe the only conclusion can be to adopt lsr:syncReference on all media elements.

4. updateSource

Introduction

In the previous discussions, the features of updateThing were more or less agreed a minima, but the name was not, and neither was the namespace.
Rationale

The name we propose is updateSource. It corresponds to the feature, and does not confuse authors with a name like update, which is similar with insert, replace, delete.

We propose to adopt the namespace according to the general policy to be determined for the application of namespaces to elements adopted in DIMS.
Conclusion

We propose to adopt the name updateSource and the namespace according to the generic namespace rule for DIMS.
5. Events

As DIMS integrates Clip begin clip End from SMIL, we propose to integrate other Events in DIMS to provide a complete management of media included in DIMS content.

Such events are: pause, resume, stop, pausedevent and resumedevent.

Manipulation of the DIMS content through the keyboard is specified in DIMS using the XML event. We propose to complete DIMS with additional key events: accesskey, long accesskey; short access key and repeatKey.

6. XML container format

Introduction

An XML container format was evoked to offer transport of a single or multiple DIMS units to be executed at different times within the same XML document. One possible use is the generation of DIMS content by CGI scripts, whereas the generation of the same content in 3GP files is a order of magnitude more complex.

5.7.1
XML Syntax

The namespace of the following elements is the rich-media namespace.

session:

the session element shall be the root element, with no attributes. The content model of session is a set of sceneUnit elements.
sceneUnit:

the sceneUnit element shall contain all the DIMS units to be executed at the same time. The scene unit element has one optional attribute time and one optional attribute rapFlag. Without time attribute, the commands shall be executed as soon as they are received by the DIMS engine. When the time attribute is present, its value shall be an offset-value as defined in http://www.w3.org/TR/SVGMobile12/animate.html#TimingAttributes. The rapFlag attribute can have the values true and false (the default value). The content model of sceneUnit is a list of dimsUnit elements.
dimsUnit:

the dimsUnit element shall contain a DIMS unit. The dimsUnit element has the optional type attribute, with possible values “normal” (default), “repair” and “repair-complete”, and the optional priority attribute, with values true and false (default). The content model of dimsUnit is restricted to:

· either a single svg element,
· or a list of LASeR commands.

5.7.2
Example

<?xml version=”1.0” encoding=”UTF-8”?>

<rm:session xmlns:rm=”http://www.3gpp.org/rich-media”
 …other namespace defs including svg: and lsr:…>

 <rm:sceneUnit time=”0” rapFlag=”true”>

 <rm:dimsUnit priority=”true”>

 <svg:svg …>

 …

 </svg:svg>

 </rm:dimsUnit>

 </rm:sceneUnit>

 <rm:sceneUnit time=”0.1s”>

 <rm:dimsUnit type=”repair”>

 <lsr:Insert …>…</lsr:Insert>

 </rm:dimsUnit>

 </rm:sceneUnit>

 …

</rm:session>
Conclusion

Such a format would be useful for authoring, dynamic generation and in general the same situations as those where others want a raw XML update.

7. Make the DIMS payload generic

Introduction

Here are changes required to accept future binarized payloads as well as some fixes

Suggested change
1. The name “DIMS units” is defined elsewhere as a subset of what should be going into RTP packets. Thus, it is not a correct term.
2. This payload format should be usable by a variety of similar formats. Restricting it to DIMS is not relevant. As such, we suggest using the generic term sample.
Conclusion

We propose to replace “DIMS Unit” with “sample” in the payload format definition.
