3GPP TSG SA WG4 PSM Ad Hoc on DIMS

Tdoc S4-AHP340
March 14-16, 2007, Paris, France

Source:
Nokia, Apple
Title:
Extending DIMS system to allow script-based updates

Document for:
Discussion and Approval

Agenda Item:

1. Introduction

This contribution relates to scene update functionality and introduces a mechanism to deliver script fragments for updating the scene content. This scheme complements the current DIMS update system, in addition to LASeR updates.

2. Background

Scripting is almost always present in all the web content today, and considered to be very powerful and offers rich interactivity to the content. Despite the broad support for scripting in mobile web content and platforms, currently there is no support for a standard mechanism at a system level to deliver scripts to the terminal independently of the web or scene content. In other words, today the scripts must always be embedded within or referenced from a web page in order to utilize and execute the scripts.

AJAX partially solves this problem with XMLHttpRequest object by retrieving remote scripts for updating the content without the need for refreshing the scene. This mechanism could apply to DIMS content as well. However, this functionality is limited to only point-to-point bearers such as HTTP where a client is responsible for making a connection to the server in order to retrieve the scripts.

The novelty in DIMS lies in the fact that we can stream the content over broadcast/multicast bearers (such as MBMS) and with no necessity for client initiated connections to retrieve the updates. Under this context, currently DIMS specification lacks the ability to deliver scripts in an independent fashion. In other words, the current system does not provide the ability to deliver scripts as a standalone i.e. without either embedding them in the original scene or carrying them within the LASeR updates. In addition, we have also identified two limitations with carrying script content within the LASeR updates:

1) This approach forces the creation of LASeR update parser instance for every time a script needs to be included in the LASeR updates.

2) Assuming the execution model of scripts in SVG applies to LASeR updates, it is always required that the scripts are added to the DOM prior to their execution.

Both these requirements have a negative impact on the memory consumption of the DIMS client independent of the device characteristics or programming language used. And the performance issues will only increase and is proportional to number of scripts used in the LASeR updates i.e. higher the number of scripts, the higher is the performance bottleneck.
3. PROPOSAL
According to the current DIMS specification draft, a single access unit can contain a series of DIMS units consisting of either of the following; a scene, scene commands or an exotic repair. The following is an example of an access unit that contains a scene, followed by a declarative scene update, both in a single access unit. Following the processing order, the scene within the access unit is first loaded, parsed, initialized and then rendered on the display. After the scene is processed, then the scene update command fragment is processed and applied to the previously loaded current scene.

[image: image1.bmp]
This concept at the packaging or transport level can be viewed as follows:

[image: image2.bmp]
This contribution extends this concept further where the updates to the scene is described by procedural code or scripts (for e.g. ECMAScript) as opposed to declarative content, which conceptually or technically results in the same DOM and visual representation of scene. The following example illustrates this concept by replacing the scene update commands in the above example with ECMAScript code. Note that ECMAScript makes use calls to uDOM API through bindings already supported by the DIMS client. This technique offers more flexibility as you could potentially design your updates with different scripting languages and does not require a specialized parser to interpret the scene updates commands nor limits the system to use particular update syntax. In addition, this mechanism also provides substantial memory savings where in the scripts are not required to be stored in the DOM for execution (as dictated by the SVG) but instead can be directly forward to the script engine with a handle to the current document for immediate execution.

Alternatively, you could also specify the script fragments in XML notation using the <script type=”application/ecmascript>….</script> described as follows.

And, following is the illustration at the packaging or transport level of using scene and script fragment within a single DIMS access unit:

Furthermore, with this mechanism you could leverage the ability to package both scene update commands and script fragments within the same package, as follows:

It shows from the above description that in order to accommodate the various scene update mechanisms, a signaling mechanism is required at the DIMS unit level. Therefore, we propose the following two alternatives to solving this problem:

1) Add a new command “script” to the set of commands “scene update” or
2) Add a field to the DIMS Unit header named ‘scene update type’ which can help the DIMS client determine the specific scene update scheme used for scene updates. The following is a description of this second approach.

DIMS Unit (DU) Header {

…..

bits(2) scene update type;

}

scene update type: indicates the scene update type used in the DIMS Unit;
0 indicates LASeR commands;
1 indicates script fragments conforming to ESMP;
2 indicates a non-standard, user-signalled update scheme;
3 is reserved;
The advantage of the second approach is that it is more flexible and allows for future update schemes, and also offers the ability to determine the specific type of update scheme present in the DIMS unit. This can reduce the processing at the client and particularly avoids the “look ahead” problem.
Finally, the following diagram presents an end-to-end system architecture reflecting the proposal presented in this contribution. It is based on diagram from the overview section in the current DIMS draft specification. The key elements introduced in this contribution are the interfaces scene dispatcher, scene update dispatcher, and the uDOM API interface. The scene update module is responsible for managing the scene updates including the scene commands and scripting fragments that are applied to the scene at a given time instance.

Scene Update Manager: This module is responsible for managing the scene updates including parsing and applying them to the scene. It consists of a scene command processor and a script engine which are both used to perform dynamic updates to the scene content.

Scene dispatcher Interface: This interface is responsible for extracting and dispatching the scene content from the transport layer to the scene manager which in turn is responsible for loading and displaying the scene content.

Scene updates dispatcher Interface: This interface is responsible for extracting the updates from the DIMS units in the transport layer and dispatching them to the scene update manager. The scene updates consist of two types; scene commands and scripts. It is the dispatcher’s responsibility to indicate the appropriate type to the scene update manager or send the update type directly to the appropriate update module.

uDOM API Interface: This is a common application programming interface for manipulating the scene content. It is available to and used by the scene update manager to perform update operations to the scene. The update content can either be through the form of scene commands or script fragments.

4. Summary

In summary, we propose the following enhancements to the DIMS system to allow script fragments for updating the DIMS scene:

1) Extend the current DIMS system to allow for script-based updates.

2) Signalling of update scheme at the command level or at the DIMS Unit level to allow multiple update types.

3) And finally, a client-side execution model for scripts along with uDOM API bindings.
One of the key advantages of this contribution is that it provides a framework for service providers to leverage the usage of scripts to perform the updates as opposed to the current solution that is limited to only scene update commands.

Another advantage of this solution is that it provides extensibility where in the service can be created using any type of scripting language, thus offering more choice (for e.g. EcmaScript, Python, or JAVA JAR files) to the content developers.

5. DIMS proposed text

The following text shall be supported and inserted into section 5.4.1 of the DIMS specification:

=======================

“In addition to the LASeR commands, DIMS shall support the carriage of independent script fragments for updates. The script fragments shall conform to ECMAScript Mobile Profile (ESMP) [3]. The processing model for scripts is similar to the other update commands where in the updates are deleted from the memory soon after their execution.

The following illustrates an example of LASeR command and its equivalent script fragment:

LASeR Command

<Insert ref="root">

 <g id="myGroup" visibility="hidden"/>

</Insert>

<Insert ref="myGroup">

 <rect id="myRect" fill="red” x=”10 y=”10” width=”50” height=”50” />
</Insert>
Equivalent Script fragment or Command

(<script>)
var root = document.getDocumetElement() ;
var myGroup = document.creatElementNS(http://www.w3.org/2000/svg, ”group”);
myGroup.setId(“myGroup”);
myGroup.setTrait(“visibility”, “hidden”);
root.appendChild(myGroup);
var myRect = document.creatElementNS(http://www.w3.org/2000/svg, ”rect”);
myRect.setId(“myRect”);
var color = root.createRGBColor(255, 0, 0);
myRect.setRGBColorTrait(“fill”, color);
(</script>)
=======================

DU Body

DU Body

DU Body

DU Header

Scene Commands

Header

DU Body

DU Header

Script Fragments

Header

DU Body

DU Header

Scene

Header

Header

DU Body

DU Header

Scene

Header

SCENE UPDATE

(Script Fragments)

SCENE

<script type=”application/ecmascript>

var root = document.getDocumetElement() ;

var myGroup = document.creatElementNS(http://www.w3.org/2000/svg, ”group”);

myGroup.setId(“myGroup”);

myGroup.setTrait(“visibility”, “hidden”);

root.appendChild(myGroup);

var myRect = document.creatElementNS(http://www.w3.org/2000/svg, ”rect”);

myRect.setId(“myRect”);

var color = root.createRGBColor(255, 0, 0);

myRect.setRGBColorTrait(“fill”, color);

myRect.setFloatTrait(“x”, 10);

myRect.setFloatTrait(“y”, 10);

myRect.setFloatTrait(“width”, 50);

myRect.setFloatTrait(“width”, 10);

root.insertBefore(myRect, null);

</script>

<svg id=”root” width="12cm" height="4cm" viewBox="0 0 1200 400"

 xmlns="http://www.w3.org/2000/svg" version="1.2" baseProfile="tiny">

 <desc>Example rect01 - rectangle with sharp corners</desc>

 <!-- Show outline of canvas using 'rect' element -->

 <rect x="1" y="1" width="1198" height="398"

 fill="none" stroke="blue" stroke-width="2"/>

 <rect x="400" y="100" width="400" height="200"

 fill="yellow" stroke="navy" stroke-width="10" />

</svg>

SCENE UPDATE

(Script Fragments)

SCENE

var root = document.getDocumetElement() ;

var myGroup = document.creatElementNS(http://www.w3.org/2000/svg, ”group”);

myGroup.setId(“myGroup”);

myGroup.setTrait(“visibility”, “hidden”);

root.appendChild(myGroup);

var myRect = document.creatElementNS(http://www.w3.org/2000/svg, ”rect”);

myRect.setId(“myRect”);

var color = root.createRGBColor(255, 0, 0);

myRect.setRGBColorTrait(“fill”, color);

myRect.setFloatTrait(“x”, 10);

myRect.setFloatTrait(“y”, 10);

myRect.setFloatTrait(“width”, 50);

myRect.setFloatTrait(“width”, 10);

root.insertBefore(myRect, null);

<svg id=”root” width="12cm" height="4cm" viewBox="0 0 1200 400"

 xmlns="http://www.w3.org/2000/svg" version="1.2" baseProfile="tiny">

 <desc>Example rect01 - rectangle with sharp corners</desc>

 <!-- Show outline of canvas using 'rect' element -->

 <rect x="1" y="1" width="1198" height="398"

 fill="none" stroke="blue" stroke-width="2"/>

 <rect x="400" y="100" width="400" height="200"

 fill="yellow" stroke="navy" stroke-width="10" />

</svg>

DU Body

DU Header

DU Header

Scene

Header

SCENE UPDATE�(Commands)

SCENE

<Insert ref="root">

 <g id="myGroup" visibility="hidden"/>

</Insert>

<Insert ref="myGroup">

 <rect id="myRect" fill="red” x=”10 y=”10” width=”50” height=”50” />

</Insert>

<svg id=”root” width="12cm" height="4cm" viewBox="0 0 1200 400"

 xmlns="http://www.w3.org/2000/svg" version="1.2" baseProfile="tiny">

 <desc>Example rect01 - rectangle with sharp corners</desc>

 <!-- Show outline of canvas using 'rect' element -->

 <rect x="1" y="1" width="1198" height="398"

 fill="none" stroke="blue" stroke-width="2"/>

 <rect x="400" y="100" width="400" height="200"

 fill="yellow" stroke="navy" stroke-width="10" />

</svg>

Script Fragments

DU Header

Scene Commands

Header

Rich Media Server & Content generation (scene, scene update commands, scripts)

De-compression/De-packetization/Unpackaging

Compression/Packaging/RTP Packetization

Transport Mechanisms

(Unicast, Multicast, Broadcast Download and Streaming Protocols)

Rich Media Client

Scene Update Manager

Script Engine

Scene command processor

Scene Manager

Scene dispatcher

Scene update dispatcher

uDOMAPI

Application Layer

Transport Layer

Server

Client

