3GPP TSG SA4 DIMS ad-hoc

Tdoc S4-AHP327

Mar 2007, Paris, FR

Source:
Apple Computer

Title:
On random access and error recovery in DIMS

Document for:
Discussion

Agenda Item:
-

1 Introduction

This document covers the ‘repair’ mechanisms that we have, or have discussed, their pros and cons, and how to fit them into the 1.3.1 editor’s draft.

2 Overview
2.1 Model

There are two ‘models of operation’ of DIMS: single-stream and multi-stream. The stream carrying scenes as its random-access points is the primary stream; other streams are secondary.

Each of these streams can have DIMS Units (DUs) that are exclusively for random-access/tune-in/error-recovery, called ‘repair’ units, as well as the ‘normal’ units. The repair units can be mixed into the same transport as the normal units, or in a separate ‘carousel’ transport, used on need and then dropped.

There may be several DUs of each type in an access unit. Indeed, scenes (SVG DUs) must be in their own DU. The last repair DU is marked with repair-complete.

2.2 Simple Repair

In the simple repair that is in the specification today, the terminal that tunes-in, or needs error recovery, starts decoding ‘repair’ DUs instead of normal DUs, until it hits ‘repair-complete’, and then moves to processing normal DUs.

In the two transport case, since the normal and repair DUs are not interleaved in the same transport, it is not possible to know which, if any, of the normal DUs at the same time as the repair DUs should also be used. (In a single transport, they would follow the repair-complete repair DU in the same access unit). Therefore, for two transport, these DUs are in the repair transport as well as the main transport, re-labelled as repair, and the repair-complete indication moved to the last of them.

The ‘repair-complete’ flag therefore signals when the repair transport can be dropped or ignored. The model assumes that an instantaneous switchover to the main transport is possible, so dropping the main transport during repair is not possible, even though for any given media time, one is decoding either a repair DU or a normal one, but never both.

2.3 Checkpoints

In the specification today, in section 8.4.2, there is a discussion of ‘recovery points’. Essentially, these are check-points; the terminal takes a periodic snapshot of its state, and labels each snapshot. A special recovery DU can say “if you have snapshot ID=X, then here are the commands that will bring that up to date”. It has to be a test; since tune-in cannot use checkpoints, the terminal may have tuned-in since the checkpoint was supposed to have been taken.

However, the design is not complete. We would need at least two more commands:

a) ‘take a snapshot with ID=X’ command;

b) the conditional wrapper ‘if you have snapshot ID=X, then here are the patch-up commands’.

These are clearly within our capability to design.

More tricky is the definition of what is in the snapshot for a secondary stream. What aspects of the terminal state are saved, and how is the saved ‘partial state’ re-integrated with the complete tree? I don’t see how to solve this one, myself. I think check-points need to be reserved to the primary stream.

The terminal processing model in 5.9.2 does not need much change. Indeed, all we need to know is that a point marked as a repair RAP might not, in fact, cause in-repair state to be entered, as the repair-from-checkpoint won’t work if you don’t have the checkpoint (new material in italics):

if (processing-state == normal) {

if DIMS-Unit.is-repair

then Discard(DIMS-Unit)

else Process(DIMS-Unit);

}
else {

// repair-needed or in-repair

if DIMS-Unit.is-RAP ||

((processing-state == in-repair) && (DIMS-Unit.is-repair))

then {

if Process(DIMS-Unit)==success {

if (not DIMS-Unit.is-repair)

 or (DIMS-Unit.repair-complete)

then processing-state := normal;

else processing-state := in-repair;

}

}

else Discard(DIMS-Unit);

}

2.4 Distributed and Rolling RAP

These two techniques have been proposed and discussed.

Distributed RAP takes an initial state (by reference) and a set of ‘replace this in the initial state with this from this upcoming DU’, and then executes the initial state after these replacements have been done. The initial state would be a scene in a primary stream, or an update (or set of updates) in a secondary stream.

Rolling RAP also defers the update completion, but does it ‘lazily’; it merely allows the initial state to be incomplete and ‘fixed up’ by the upcoming updates. Typically this involves inserting ‘nonces’ (small DOM nodes) for material that later updates will replace or delete.

We now need to know ‘when is the rolling complete’ or ‘when should I apply the initial state’ (which ought to be complete by now). In the discussion documents we have had up until now, we’ve proposed counters. But a DIMS Unit label would also work, and, as it happens, we have the perfect bit currently unused; we need to label a ‘normal’ DIMS unit as completing a repair process, and indeed currently the repair-complete flag is unused for normal DIMS Units.

2.4.1 DRAP

To integrate DRAP we also need to have the pointers to upcoming ‘normal’ DUs. That means that their top-level constructs need an identifier, which in turn means that they cannot be simple concatenations of commands; each DU needs to be a single XML expression. Those top-level XML expressions need an xml:id, and of course the nodes within them to which we want to refer also need IDs.

DRAP also needs its own processing loop mode (the ‘loot and pillage’ mode it has been called, but in the pseudo-code here I call it ‘repair-assembly’). This state is entered when the initial DRAP command is encountered. There is a logical ‘saved variable’ of the (incrementally fixed) initial-state that will finally be applied.

DRAP then needs an XML ‘repair’ command that contains:

a) a pointer to the initial state;

b) a set of triples {from-this-DU, replace-this-ID-in-initial-state, with-this-ID-from-the-DU}

I think the initial state would be a repair DU also, but the pseudo-code below allows it to be either. So the normal pattern would look like:

repair-DU: DRAP command
repair-DU: initial-state (SVG scene, or update commands): repair-complete
normal-DUs: with material that is used for collection
normal-DU: marked as repair-complete, the now-fixed initial-state is executed

Note that since the point of DRAP is that it collects from the normal DUs, we cannot ‘emerge’ from DRAP processing based solely on repair DUs. So using a flag on a normal DU is OK.

The processing loop now looks like this:

state DRAP-state;

if (processing-state == normal) {

if DIMS-Unit.is-repair

then Discard(DIMS-Unit)

else Process (DIMS-Unit);

}
else if (processing-state == repair-assembly) {

supply-to-DRAP-machine(DU);

if (not DU.is-repair) && (DU.repair-complete) {

Process(DRAP-state);

processing-state := normal;

}
}
else {

// repair-needed or in-repair

if DIMS-Unit.is-RAP ||

((processing-state == in-repair) && (DIMS-Unit.is-repair))

then {

Process (DIMS-Unit);

if (DIMS-Unit is DRAP)

then pending-state := repair-assembly;

else pending-state := normal;

if (not DIMS-Unit.is-repair)

then processing-state := normal;

else if (DIMS-Unit.repair-complete)

then processing-state := pending-state;

else processing-state := in-repair;

}

else Discard(DIMS-Unit);

}

Note that the DRAP machine gets all DUs (repair or not) to check for the loot-and-pillage operation. The repair-complete flag in repair DUs can still be used to tell when to switch transports in the two-transport model.

2.4.2 RRAP

RRAP actually needs only the initial command, that says an RRAP is coming, and that in turn needs only to warn the presentation layer that ‘muted display’ may be appropriate. The processing loop doesn’t need changing. The repair-complete flag on a normal DU can be used to signal a higher-level that the RRAP ‘patch-up’ that results from normal DU processing has now completed and that ‘muted display’ can now be turned off.

Display muting is still, however, not possible for secondary streams, and content authors would need to be warned that their ‘nonces’ needed to be ‘visually acceptable’ to the user.

2.5 Continuous Repair

Continuous repair actually supplied a portion of the tree in each repair DU. After assembling N of them, repair is complete.

To do this properly, every node in the tree must be ‘or’ed into position in its correct relative order. We need a new XML attribute only used by continuous repair, which supplies its ‘sibling ordering’. It has two variant forms.

sibling-order = “N of M”;
sibling-order = “P”;

The first says that this node is the Nth of M total children of the parent. This is suitable (and a nice sanity check) for nodes whose sibling counts do not change in the period of the repair. N is ‘dense’ from 1 to M.

The second merely says that this node comes after nodes with a sibling-order less than P, and before nodes with a sibling-order greater than P. P is allowed to be ‘sparse’.

We need a new command for the repair DUs, which is ‘repair-fragment’. Like DRAP processing, this builds an initial state. However, unlike DRAP we have to count within this processing when we have seen enough repair DUs to execute this state and emerge from repair processing. Every repair-fragment DU is marked as is-repair=1 and is-RAP=1. The ‘assembled-state’ is set empty when repair-needed is entered.

The processing loop now looks like this:

state assembled-state;

if (processing-state == normal) {

if DIMS-Unit.is-repair

then Discard(DIMS-Unit)

else Process(DIMS-Unit);

}
else {

// repair-needed or in-repair

if DIMS-Unit.is-RAP ||

((processing-state == in-repair) && (DIMS-Unit.is-repair))

then {

if Process(DIMS-Unit) says enough-fragments-seen

{

Process(assembled-state);

processing-state := normal;

}

if (not DIMS-Unit.is-repair)

 or (DIMS-Unit.repair-complete)

then processing-state := normal;

else processing-state := in-repair;

}

else Discard(DIMS-Unit);

}

3 Discussion

Each of these repair mechanisms has costs, advantages and disadvantages. The following sections give a narrative discussion of them, and then there is a summary table.

3.1 Simple Repair

Simple repair is the lowest-cost of these, and is treated as the ‘cost baseline’ below. It has the disadvantage that its bandwidth use may be bursty – the redundant scenes may possibly be large.

Careful management of the sequencing can help reduce the bandwidth used by ‘overlap’ between repair and normal processing, but there still may be some.

It has the advantage of simplicity.

3.2 Checkpoints

Checkpoints have a significant cost, both in spec. and implementation terms. The specification needs two new commands – one to take a checkpoint, and another to build a repair using a saved checkpoint. Worse, the terminal needs enough memory for a complete copy or copies of the state (DOM tree, user state etc.).

Unfortunately, checkpoints also have disadvantages. They are not obviously applicable to secondary streams (what portion of the tree represents saved state, and how would it be re-integrated later if used?). Also, they only work for true repair after loss, not tune-in or random access, and they may not even work for repair (if the tune-in was after the last saved checkpoint, for example). This in turn means that they cannot be the only repair commands, and this in turn means that they are not assured to work when encountered.

Against this, they have the advantage that they might help preserve some of the interaction or dynamic state.

3.3 DRAP

DRAP has significant costs in specification and implementation as well. We need a new XML grammar for expressing the ‘re-assembly’ process, and we need to be able to identify some or all DUs in the main stream (to make the pointers work). We need to re-use the bit to say that DRAP processing is over, as well.

The terminal needs a new processing mode, in which normal command processing is suspended, and instead incoming DUs are inspected to collect the desired XML fragments.

They don’t seem to have technical disadvantages, in the sense of conditions they don’t handle well.

DRAPs have the advantage that they may save bandwidth when the scene is highly dynamic.

3.4 RRAP

RRAP has a small specification cost and an optional implementation cost. It needs a command to warn that an RRAP is starting, and the re-use of the bit to indicate it is over.

It has the disadvantage of ‘exposing its workings’ in terminals that do not care to mute while it’s working, or in secondary streams, where it’s not possible to mute.

RRAPs have the advantages that they may save bandwidth when the scene is highly dynamic, and the cost is almost entirely in authoring.

3.5 Continuous Repair

Continuous repair also has a specification and implementation cost. Again, some new XML attributes are needed, and a new processing loop in the terminal of ‘or’ing the fragments together.

It has the disadvantage of not obviously working with other repair techniques in the same stream.

It has the advantage that it may offer smoother bandwidth use and faster tune-in.

3.6 Summary

	
	Extra Costs
	Advantages
	Disadvantages

	Simple RAP
	none
	Simplicity
	Bandwidth use?

	Checkpoints
	Memory for c/ps
	Saves dynamic state
	Primary stream only

Repair only (not Tune-in or RA)

	DRAP
	‘Assembly’ loop, processing model

XML to start construction, and complete indication
	May save bandwidth
	

	RRAP
	‘Warning’, and complete indication
	Simplicity

May save bandwidth
	Secondary-stream tune-in may exhibit temporary ‘nonce’ states

	Continuous Repair
	‘Assembly’ loop, processing model

Another attribute
	Faster tune-in

Smoother use of bandwidth
	Hard to integrate in same stream with other models

4 Conclusion

I think that this paper shows that any of these techniques can be adopted, and indeed more than one could be. We should structure the specification so that we can adopt some of them in future even if we decide not to adopt them immediately.

It should be noted that we should separate conceptually the specification of the media type, and the profile we use. This enables us to define some things in the media type definition but not in the one profile we use in PSS, MBMS and MMS, and indeed allows other bodies to request profiles that make different decisions.

Checkpoints appear to have the rather dismaying combination of both significant cost, and technical drawbacks. The cost in memory alone makes them unpalatable, in my opinion. We should not adopt them.

The recent clarification of the structure of DIMS Units makes RRAP very close to ‘already implemented’. All that is missing is the warning to the terminal that RRAP has started, and is completing. The first is a new command, the second the use of an existing bit in a situation when it is currently reserved. Since it uses the same techniques as normal processing, it is easily implemented in both encoder and client.

DRAP comes through with no technical disadvantages, but with significant cost. Personally, I do not believe that the saving in bandwidth they offer is worth the cost. But encoders can of course choose, and indeed outside 3GPP decoders could also choose (given a profile that is not used in 3GPP, for example).

Continuous repair stands as an interesting technique that may need to wait a cycle while we get more experience with typical streams.

Apple
1/1
DIMS

