3GPP TSG-SA4 PSM Adhoc, 11. - 12. January 2007
Tdoc S4-AHP310

Source:
Ericsson
Title:
Improved pipelining to speed up session establishment
Document for:
Discussion and Proposal
Agenda Item:
4.1
1 Introduction
The following section is a cut-paste from an Email, written by Magnus Westerlund to the MMusic IETF list (21st Dec. 2006). Since the RTSP 1.0 RFC since somehow ambiguous in terms of extensibility, the IETF discussion is currently more focusing on RTSP 2.0 pipelining extensions. 
A 3GPP defined pipelining mechanism will be based on RTSP 1.0. Therefore, we should keep the RTSP 2.0 and the 3GPP defined RTSP 1.0 pipelining mechanism as aligned as possible (best the same mechanism). 
2 Improved pipelining to speed up session establishment
This email discuss if we should add an additional mechanism to allow pipelining to a higher degree, thus allowing RTSP 2.0 to complete SETUP and start playing in a single RTT after the connection has been established.

Currently RTSP 2.0 allows one to create an session and start it playing in two RTTs after connection establishment. The first to create a session and receive the session ID. The second RTT to setup any additional streams and start playing media. This is better than RTSP 1.0 with one RTT, for any session using aggregation to handle multiple media streams.

There has been quite a lot of interest to improve the time it takes to do the setup and start playing media. I think there is interest to improve RTSP as far as possible. A reason for doing this is that TLS establishment will increase the delay and this allows to counter that effect to some degree. There is also a point in doing this to enable the NAT traversal to done fully in parallel as all media streams will be handled at the same time, instead of one stream first and then the remaining one RTT later. Below is an proposal on how this can be accomplished.

Performing pipelining of one or more SETUP followed by a PLAY without receiving any answers.

The basic idea is that we should enable a client to send all the SETUP requests and the PLAY to the server without receiving any response before the other messages could be sent. The main obstacle to this is the session ID. Normally the first SETUP creates the session and its ID. 

First after the client has received the servers response is it able to perform any subsequent SETUP to add media streams or start playing. Thus if solving this issue one need to add something that allows the server to determine that a number of subsequent request belongs together and the server should keep some context between these messages. The main issue with this is to avoid laying to much burden on the server and avoid creating a mechanism that allows a client to overload the server when using this mechanism.

My proposal for this mechanism would be to add a new header:

Pipe-Hdr = "Pipe-Lined-Requests" HCOLON random-id random-id = 12*(Digit / Alpha) SeqNr = 1*DIGIT

The Pipe-Lined-Requests header is used to identify which requests that shall be treated together and needs to be included in each request that are pipe-lined within the same context. That way the server will when handling the first one know that the context will need to be saved and for how many future requests. The random-ID is one part of a mechanism to avoid collisions between requests and allow multiple ongoing pipelining sequences to happen at the same time. This is necessary to allow for proxies to aggregate multiple interactions over the same connection. The ID shall be freshly generated in a cryptographically random way (RFC 4086) for each sequence of pipelined requests. This intends to satisfy the requirement to have little risk of collision and provide an identifier for binding the requests to the context being generated.

The server shall timeout the temporary context to prevent an attack after 60 seconds. In case of someone attack the server by creating a large number of contexts then the server can refuse to save the context and instead provide an error message that the context is not available for any request after the first one. However in this case the server is more likely to run out of room for session states anyway. A new error code is defined to inform the requesting entity about when the requested temporary ID is not available. In case this happens the client will only have lost one round trip time as the first request in the series will have created a session if successful. Thus any subsequent requests can use the created session context rather than the temporarily bound by the random-id.

The extra context the server needs to keep is small. A simple mapping table between the temporary one and the created session ID and with an creation time to allow for expiring the entry. The first request in the pipelining series SHALL be one that creates a session context, i.e. a SETUP request. Any of the methods SETUP, PLAY, OPTIONS, SET_PARAMETER, GET_PARAMETER, TEARDOWN and PAUSE are allowed to be used as requests subsequent the first one.

Proxies may add, modify or delete the Pipe-Lined-Requests header.

Please be aware that this pipelining mechanism will result in that all the requests that are successful will build on the session context. 

While any failed ones will not directly influence the subsequent requests. Thus if a pipelining consists of SETUP, SETUP and then PLAY then if one of the SETUP fails and the PLAY is successful then the server will play out the session with a single media. A more advance mechanism could be defined that put requirements on previous requests to be successful can be designed but doesn't seem motivated. Because if some request fails the client can stop the playback, and the go back and correct the failed requests. This cost seems little compared to the complexity a more advanced mechanism would create. It is also inline with previous designs that is optimized for the case when everything works and only in cases there are some troubles will introduce extra delay.



























