3GPP TSG-SA WG4 PSM Ad Hoc on DIMS #2
Tdoc S4-AHP 286
Cupertino, CA, USA, 6-7 July 2006.

Source:
Ericsson, Nokia
Title:
Synchronization and tune-in
Document for:
Discussion & approval
Agenda Item:
4.1.2
1 Introduction

Traditional random access points in DIMS are very costly. As they cannot use data/settings sent before the beginning of the tune in point they result in entire scenes being sent periodically. Every element in a traditional random access point has already been sent. In scenes with large changes, most of these elements are being sent more than once during a short period of time.
Distributed Random Access Points (DRAPs) are a type of random access point that can utilize this redundancy, or simple spread the transmission of a random access point over time.
2 Advantages of DRAPs
The tools made available in random access points are simply an extension to the tools already available. A Distributed random access point with zero distribution is in principle a traditional random access point. This makes its performance at worst in par with a traditional random access point.
2.1.1 Bitrate reduction

As both bandwidth and Memory are typically limited, DIMS elements are sent more or less when needed. Due to these restrictions elements are continually added and removed. This results in the same elements being sent twice during a short period of time, possibly directly after each other.
A simple scenario where DRAPs can be used to reduce bandwidth is given below.

[image: image8.bmp]In this example the bandwidth used by the ‘traditional’ random access point has been reduced. The DRAP is sent with the scene update, i.e. the DRAP does not need to wait for any updates. A more complex example is given below.

[image: image2]
In this example the bandwidth used by the RAP has been reduced by over 80%. The extra latency (in this case the time between updates SU1/SU2 and SU2/SU3) varies compared to content, but in all realistic use cases is VERY small.

2.1.2 Traffic shaping

There are use cases where bandwidth is limited and scenes are slowly built up over time. In these cases the cost of a random access point is very large compared to the bandwidth used by the updates. In some cases the bit-rate peaks caused by typical random access points can result in extra latency and discontinuities in the stream.

[image: image3]
DRAPs can be used to spread out these random access points over time, avoiding bit-rate peaks.
2.1.3 Implementation cost/complexity – Encoder

As with most encoding tools, the implementation cost on the encoder side is entirely implementation specific. At one extreme an encoder may choose to use only DRAPs which do not refer to other elements, i.e. traditional random access points. On the other end of the scale, DRAPs can be tightly integrated with content creation giving good bandwidth reductions.
2.1.4 Implementation cost/complexity – Decoder

As they are entirely redundant, error free decoders can ignore DRAPs. When they are used, the building of a DRAP need not be more complex than applying a simple scene update. All of the tools required by DRAPs already exist in DIMS. Tools such as element addition, which is part of the scene update mechanism, are reused by DRAPs making the implementation cost minimal.
3 DIMS proposed text
The following text shall be inserted to section 8.2, Tune-in and resynchronization:
8.2 Tune-in and resynchronization

During a rich media service, it is important for the clients to be able to connect and access the current streamed content with minimal latency and data inaccuracy. DIMS has several mechanisms to aid this purpose.

Among them are:

· Replacement scenes: An entire scene is a random access point. Such scenes work in the same way as an update which replaces the entire DOM tree and refreshes the decoder.
· Redundant scenes: DIMS clients can achieve synchronization or re-synchronization by decoding redundant scenes. They are ignored by clients not needing (re-)synchronization. Distributed random access points are redundant scenes.

8.2.1 Distributed Random Access Points (DRAP)

A Distributed Random Access Point (DRAP) is a redundant SVG scene that can, instead of explicitly defining all elements itself, reference elements in scene updates. These references can be used to reduce redundancy (i.e. not defining an element both in a RAP and a SU) or to simply spread the size of the RAP over a period of time.

[image: image4]
Figure xx: Illustration of the concept behind DRAPs.

8.2.1.1 DRAP syntax
The rootmost element in a DRAP document shall be a <drap> element.

Attribute definitions:

updatesrequired="updates-required"
Indicates the number of coming scene updates required. Note: These scene updates are NOT to be applied to the DRAP.
NewSVGTime=” New-SVG-Time”

Indicates the SVG time the scene created by the random access point should have.

The namespace for DRAP is the DIMS namespace http://www.3gpp.org/dims
The drap element shall have an SVG child element. The drap element may have a REX child element. The drap element may not have any other child elements.

The getfromupdate element is used to refer to elements in scene updates. The element referred to in the update shall replace the getfromupdate element in its entirety.

Attribute definitions:

ref="elementid"
Specifies an xml id appearing in a scene update. If the same xml id appears in different scene updates, the first occurrence shall be used.
[image: image1]
[image: image5]
Figure xx: Example usage of the getfromupdate element.

An example DRAP is given below. The elements “Element1” to “ElementN” are to be taken from the two scene updates following the random access point. The attribute “attribute1” in the element “Element1” is to be then changed to the value “100”.

<?xml version="1.0"?>

<drap xmlns:dims=”www.3gpp.org/dims” updatesrequired=”2”>

 <svg xmlns=”http://www.w3.org/2000/svg”

 version="1.2" baseProfile="tiny"

 viewBox="0 0 30 30">

 <desc>Random access example</desc>

 <dims:getfromupdate ref="Element1"/>

 ...

 <dims:getfromupdate ref="ElementN"/>

 </svg>

 <rex xmlns='http://www.w3.org/2006/rex'>

<event target='id("Element1")/@attribute1' name='DOMAttrModified'

 newValue='100'/>

 </rex>

</drap>

SU: Update

RAP: Random access point

The update SU(x+3) is applied in the same way irrespective of if the RAP was used or not

RAP

After the elements are copied from the updates, the REX from the RAP is applied to the SVG section. The RAP can then be used at t=x+2, ie replacing SU(x+2).

The RAP is sent between SU(x) and SU(x+1)

Element myelement2 is copied from SU(x+2)

Element myelement1 is copied from SU(x+1)

x+3

x+2

x+1

x

time

SU

SU

SU

SU

SU

...

<rect xml:id="MyRect" width="60" height="10"/>

...

RAP

...

<getfromupdate ref="MyRect"/>

...

The getfromupdate element is replaced in its entirety by the rectangle element with xml id “MyRect”.

Time

And how DRAPs can be used

Example of the ’traditional’ way...

SU

Same data

DRAP

RAP

SU

Bitrate

References

And how DRAPs can be used

SU1

SU2

SU3

DRAP

SU1

SU2

SU3

Example of the ’traditional’ way...

RAP

[image: image6.bmp][image: image7.bmp]