TSG SA4 PSM Adhoc DIMS#38 meeting
Tdoc S4-AHP 282
6-7 July, 2006, Cupertino, California USA  


Source:
Streamezzo
Title:
Append Mode for DIMS 
Document for:
Approval

Agenda:
4.1.2
1. Introduction

The append mode was proposed in Bordeaux as part of the LASeR based specification.

The comparison document S4-060203 clearly indicates the need of this feature which is missing in the MORE proposal.
2. Append mode overview
MPEG-4 part 20 provides a mechanism for binding two or more consecutive streams together into the same service. A service is a series of scenes modifications which the user perceives as a single entity. In particular:

1. a service is not a concatenation of independent scenes, but a scene followed by scene modifications that maintain a sense of continuity. 

2. the effect of local interaction should be “remembered” independently from scene modifications.

3. each segment of a service is transported separately, possibly with different documents, files, sessions, etc.

As a result, when receiving a new segment, the browser needs to know as early as possible in the content access procedure if the segment is the first segment of a completely new service (new service mode, only mode in legacy systems) or the next segment of an existing service (append mode). This information is conveyed in the LASeR header and is called: newSceneIndicator. It can be seen as belonging to a independent layer in between transport (SAF, 3GP FF, HTTP, RTP/RTSP) and the update mechanism.
3. Technical Aspect

a. Signalization

The “append” mode consists in signaling in the transport layer that a packet received from a server contains scene updates without having to “XML” parse the whole SVG scene.

[image: image1.emf]LASeRHeader:

newSceneIndicator

+

other info

SVG / LASeRScene

Or 

SceneUpdate

Header

PacketData sent fromserver

Payload

«newSceneIndicator»signallingin 

scene header


Figure 1 : Receiving a scene update with append mode

A packet received from a server is divided in two parts:

· A header: contains information needed to interpret and decode the payload, such as whether a new service is defined or not i.e. append mode (newSceneIndicator bit) as well as all the encoding parameters.
· The payload.
In append mode, a field signals that the packet appends to the previous stream or not:
· A new scene starting a new service is carried in a packet with ‘false’ newSceneIndicator flag.

· A set of scene updates is carried in a packet with ‘true’ newSceneIndicator flag.

b. Update
Without append mode (Figure 2):
· After receiving a scene via HTTP, the HTTP Session is closed (because of time-out or client action). 
· If the client during its navigation launches a remote interaction, a new HTTP Session is opened. 
· The server generates a whole scene containing the result of the user remote interaction.

· The client engine needs to parse the “payload” before it can determine that it is receiving a whole scene.

· Because a “New Scene” is sent, the client engine disposes all the media decoders and has to allocate new ones (even if same media are still used). 


[image: image2.emf]HTTP Request

«New Scene»

HTTP Session #1

HTTP Session Closedbecause of

time-outor client action

Media 

Decoders

ServerClient

SVG/ LASeR

Engine

Audio 1Video1

Image 1

«New Scene»



[image: image3.emf]Remoteinteraction

Media 

Decoders

ServerClient

SVG/ LASeR

Engine

Audio 1Video1

Image 1

Theservergeneratesthewhole

scenebecause itisa new 

session

Media decoders

are disposedand

are allocatedan 

othertime

Image 2

Audio 1

Image 1

Video1

«New Scene»

HTTP Request

«New Scene»

HTTP Session #2


Figure 2: Updating a scene without append mode

With append mode (Figure 3):
· After receiving a scene via HTTP, the HTTP Session is closed (because of time-out or client action). 

· If the client during its navigation launches a remote interaction, a new HTTP Session is opened. 

· The server generates a scene update containing the result of the user remote interaction and signals that the packet is appending to the previous scene.

· The client engine does not dispose all the media decoders nor does it have to allocate new ones.


[image: image4.emf]HTTP Request

«New Scene»

HTTP Session #1

HTTP Session Closedbecause of

time-outor client action

Media 

Decoders

ServerClient

SVG/ LASeR

Engine

Audio 1Video1

Image 1

«New Scene»

NewSceneIndicator

= True

«NewSceneIndicator» signalingin transport layer



[image: image5.emf]Remoteinteraction

Media 

Decoders

ServerClient

SVG/ LASeR

Engine

Audio 1Video1

Image 1

NewSceneIndicator

= False

Audio 1Video1

Image 1

Image 2

NewSceneIndicator

= False

Media decodersare notdisposed

A new decoder

media isinstanced

due to update

«SceneUpdate»

«NewSceneIndicator» signalingin transport layer

HTTP Request

«SceneUpdate»

HTTP Session #2

HTTP Session Closedbecause of

time-outor client action


Figure 3 : Receiving a scene update with append mode
c. New scene
When the append flag is ‘false’, the client engine knows that the initial scene of a new service is being received. Thus, it is able to dispose all the current media decoders before parsing any scene data (see Figure 4).


[image: image6.emf]Remoteinteraction

Media 

Decoders

ServerClient

SVG/ LASeR

Engine

Image 2

Media decoders

are disposed

Audio 1Video1

Image 1

Image 4Image 3

«New Scene»

NewSceneIndicator

= True

«NewSceneIndicator» signalingin transport layer

HTTP Request

«SceneUpdate»

HTTP Session #3

NewSceneIndicator

= True


Figure 4: Receiving a new scene with append mode
4. Benefits
a. Client optimisation

A classical situation is following. The user agent already contains a previous scene and starts receiving new content:

1. the scene starts with a scene header, which contains the newSceneIndicator information 

2. then, before the first LASeR access unit, the images needed for the initial scene are sent

3. then the LASeR access unit is sent, followed by the rest

Option 1: the new content is a new scene
Without newSceneIndicator, the user agent needs to get to step 3 and start decoding before it can drop the previous scene and all associated media. By then, images received in step 2 are already in the user agent, so discarding has to be selective.

With newSceneIndicator, the user agent already knows in step 1 that it can clean up the previous scene, and it can then do it very simply by dropping everything received, scene tree, images and media, indiscriminately. The process is thus much simpler and applied earlier, which will make for a faster scene switch.

Option 2: the new content is an append

In that case, the benefit of the newSceneIndicator is lightweight media management, since it is not needed to manage separate media bundles: since the user agent knows in step 1 that the new content is an append, then new received media can be mixed together with already received media.

b. Connection Optimization

This is particularly useful for server side and service efficiency, to reduce the number of necessary concurrent HTTP connections and to optimize the client-to-server connection time. 

Without append mode, the server can:

4. cut the connection as soon as possible after the initial scene, and thus save on the number of concurrent connections, with the following drawbacks:

· upon a remote interaction, the complete scene needs to be resent, with a bandwidth and latency penalty
· upon a remote interaction, local interaction in the content is lost (because the complete scene is reloaded); this makes some classes of services impossible to implement.

5. keep the connection alive as long as possible, in order to keep local interactions and save bandwidth and latency, which has the following drawbacks:

· this is done at the cost of increasing the need for concurrent connections and limiting the capability of the server in number of concurrent active clients.
· some clients will never reconnect, so there has to be a time-out, after which local interactions will be lost and bandwidth will be consumed anyway; so this does not address services requiring long periods of inactivity, such as services with active durations spanning days or weeks.  

c. Service caching

The append mode also allows the creation in advance of multiple responses to possible user requests. If the service is modeled as a state machine, each transition of the state machine represents a change to the current scene and may be implemented as an append component. Careful authoring and scope management is required, in particular to avoid clashes of id between elements added by different append components. Still, this functionality opens the way to servers caching most of the responses to users, therefore dramatically improving the service’s performance.

5. Conclusion

From a server-side point of view, the interactive transmissions can be considered as a series of separate connections, as opposed to the continuous connection of the streaming style. It is typically implemented using separate HTTP connections, since each data burst results from a user request. However, from a LASeR viewer point of view, it is the same scene/service that is modified. Hence the requirement for the server to be capable of signaling an append mode: “this stream does not contain a totally new scene, but an improvement to the scene the viewer is currently processing”.

This information allows the DIMS Client to not dispose of all the media decoders’ resources. In the opposite, if a “NewScene” happens, the DIMS Client knows that all media decoder need to be trashed and all resources are deleted (unless they are marked for caching). 

6. Text for DIMS specification

We recommend the support of the append mode in the DIMS specification.

Creation of subsection in 5.3:

5.3.1 declarative update mechanism

5.3.2 append mode
Text for section 5.3.2:
The append mode as defined in ISO/IEC 14496-20:2006 section 6.6.2.2, [1], shall be supported.

[1]
ISO/IEC 14496-20:2006/COR1 Information technology— Coding of audio-visual objects — Part 20: Lightweight Application Scene Representation (LASeR) and Simple Aggregation Format (SAF) 















_1210409743.ppt






LASeRHeader:

newSceneIndicator

+

other info

SVG / LASeR Scene 

Or 

Scene Update

Header

Packet Data sent from server

Payload

« newSceneIndicator » signalling in scene header






























