TSG SA4 PSM Adhoc DIMS#38 meeting
Tdoc S4-AHP 275

6-7 July, 2006, Cupertino, California USA

Source:
Streamezzo, Orange
Title:
Binary format for DIMS
Document for:
Approval
1 Introduction

In the current 3GPP specification the usage of gzip is mandated when using SVG Tiny.

In the DIMS specification an update mechanism will be defined. A scene update might be a very small packet. A scene might also be a small packet. Then the usage of GZIP is not appropriate as it will result in a bigger overhead and increase the parsing time.

Regarding bandwidth and network consideration, using pure XML is not suitable or will depend of the size of data to be transmitted.

A combination of XML data and gzipped data will in any case increase the parsing time both client and server side, XML parsing of a known vocabulary such as SVG has been proven to be a lot less efficient in time and memory footprint than binary decoding, and the decompression step adds even more delay and memory footprint.

We recommend the usage of binary format for DIMS compression as defined in LASeR
In LASeR, a packet is decoded directly from binary to LASeR Commands and DOM tree elements

Even when bandwidth is not an issue, the LASeR binary format delivers significantly better response times and resource usage. These 2 points are further described below.

This contribution also examines the mixing of encoded and non-encoded content within one stream.

2 Binary Validation/Parsing
In a typical DIMS use case, the terminal has to validate a received document to recover default values, exact namespace information. LASeR binary encoder performs the validation at server side and sends the document in pre-parsed format. Therefore, when encoded, a document has already reached a very good level of validity. Very few extra processing is needed on the receiver side to validate the received document.

The validation process is used to associate type information and may give default values to every component of a LASeR/SVG document (attribute, element, leaf nodes). This mapping is performed at the encoder side to improve compression ratio and to facilitate document processing. It is used to select the proper encoding scheme for each leaf of the XML document tree. The document values are therefore transmitted in a typed format and can directly be processed by the terminal without performing any string conversion (like the time consuming "atoi" function needed when working at textual level). This allows to efficiently processing binarized XML descriptions. Data transmitted to the application can directly be consumed. There is no string conversion process required compared with other generic compression schemes as GZIP.
 As a result, LASeR binary document can be processed up to 100 times faster than its equivalent XML file.
This is true for any type of device, including but not limited to gateways in charge of substituting values at a late stage in the delivery.

3 Binary Compression
3.1 Usage on complete streams
The binary compression defined in LASeR permits to compress on average an XML document by a factor of 6, based on 350 test sequences. For the same test samples, the Gzip compression rate is only 2.5.

Moreover, for the small size sequences (XML document under 1 Kb), the compression rate are:

For LASeR binary : around 7.2

For Gzip: around 1.8

3.2 Mixed usage

The binary compression defined in LASeR allows the transmission of mixed encoded and non-encoded packets. Encoding can be decided on the packet per packet basis. In order to make it possible, string values of the XML IDs need to be transmitted, using the LASeRHeader attribute hasStringIDs=true. This introduces a small compression penalty: on the 350 test sequences, the average penalty is 2.3%.
We believe this mixed usage is actually not useful, and would recommend to examine precise use cases and check that there are clear requirements for it.
4 Usage on SVG Tiny1.2

Applying the LASeR binary encoding as it is specified to a SVGT1.2 document will result in no performance losses.

5 Text for DIMS specification

5.1 Section 7

The Binary format defined in ISO/IEC 14496-20:2006/AMD1 section 12, [x], shall be supported.
5.2 Section 3

Add a reference to LASeR binary format:

[x] ISO/IEC 14496-20:2006/AMD1: "Information technology – Coding of audio-visual objects – Part 20: Lightweight Application Scene Representation (LASeR) and Simple Aggregation Format (SAF) – Amendment 1: SVGT1.2 Support"
