3GPP TSG SA WG4 Dims Ad-Hoc

Tdoc S4-AHP271

July 2006 Cupertino


Source:
Apple Computer

Title:
Questions on and Suggestions for the DIMS specification draft

Document for:
Discussion

Agenda Item:
4.1.2

This is a set of questions, observations etc. on various parts of the DIMS specification.

1 Scene Model

My working assumption to date has been that the stream is fairly tightly tied together.  That is, a scene and its updates are all part of a single stream.  Other models are possible;  for example, a scene might contain some kind of unique identifier, and an update stream then may arrive at the terminal through some other scope, embedding, or mechanism, saying “I update the scene with identifier XXXX”.  This would enable, for example, an HTML page to embed an SVG (or SVG-like) document, and also a suitable URL (e.g. HTTP, RTSP, RTP multicast reception) giving the updates.  If such a page had more than one embedded scene, or updates were permitted to other DOM trees (e.g. the HTML itself), this enables the dis-ambiguation of which scene/tree is updated.

However, there are nasty security implications here that would need sorting out.  If I know the scene ID of the scene in which you interact with your bank, and the scene ID of the overall UI, I could update the UI to notice when you are working with your bank, and then update that scene to phish in it.  Not good.

However, this may be one way around the “dual composition” (both SVG and file-format) problem that surfaced in the LESSER document.

An alternative is for the scene to state “I am updated by the stream with URL Y”.  This certainly seems safer, though we should think through the security implications also.

2 Access Unit

I’m not sure what word we want to use for “all the data that is decoded and acted upon at one timestamp” but for the moment I am using the MPEG “Access Unit”.  

Typically I would say that the file format and the RTP format refer to the same definition of AU.

We need to decide:

a) can the type of encoding and/or compression vary AU-by-AU, or is it stable for a stream?

b) If the stream is being sent in textual form, is the entire AU textual or might we have some kind of header (binary) that carries more information (e.g. the counter that was in the recent MORE proposal for noticing ‘discardable’ frames)?
3 SVG Extensions

LASeR defines some extensions to SVG.  Do we need any?  We have already agreed that the succession of logical ‘scenes’ (i.e. the initial one, and the one that results from any update) are valid SVG scenes.

The extensions could be XML constructs, events, or something else.

4 Timing Model

If the stream definition holds – that the initial scenes and their updates all form part of the stream – then I think the following is true.

I introduce the following concepts: stream time, and scene time.  The stream time is the ‘container’ timeline.  In 3GPP files this is the ‘movie’ or ‘presentation’ timeline and has a zero origin.  In RTP this is the RTP time and has an arbitrary origin.  In either case it increases through the stream, irrespective of what is sent.

However, SVG also has time associated with it (‘presentation time’ in SVG Mobile 1.2).  It seems that the SVG time is necessarily reset to zero when a new SVG scene replaces a previous one.

However, these two timelines are otherwise locked together.  In addition, any parallel streams (in 3GPP files or RTP) are necessarily locked to the same clock.  Starting/stopping this clock (e.g. with play/pause) stops all these.

If we allow ‘refresh scene’ it needs to be able to express “what the SVG time would have been if you had got the SVG scene a while ago and all its updates”.

5 Back-Channel

Client-server interaction is defined in LASeR using standard web techniques (opening URLs, using scripting, possibly with AJAX-like operations and so on).  MORE has a custom back-channel, which implies custom servers and so on.  We should be able to work out the difference, pros and cons, of these approaches.

6 Compression

We all seem to be agreed that (a) uncompressed (plain XML) content should be possible and that some amount of compression permitted.  However, we have proposals for all of

a) DIMS-specific compression (LASeR binary encoding);

b) XML-specific compression (BiM, whatever the W3C comes up with)

c) Generic compression (GZIP)

7 Tune-in, Error Resilience, and re-sync

We have a number of tools proposed here:

1) Classic ‘I frames’;  complete SVG scenes that re-initialize the DOM.

2) Optional I-frames (‘refresh scene’):  complete SVG scenes that are a ‘shadow’ of the state you would have achieved if you had received the previous I-frame and all the required updates from there;

3) Distributed random-access points;  a set of frames which, cumulatively, build an I-frame.

4) Discardable and non-discardable frames.  A counter, separate from the frame counter, tells you when a non-discardable frame goes by.  Losing discardable frames is, by definition, (mostly) harmless.

5) Scene difference information.  I’ll not try to summarize this, as I am not sure I have fully understood its benefits!.

We could decide on which of these tools seem useful to us, at least as an initial cut.

8 Profiles and Levels

Profiles are a way to detect that support for particular features is required.  I can think of two good reasons to have a profile indicator in the specification, even if we have only one profile today:

a) others (e.g. the general internet) may wish to work with our specification but in a less restricted environment;

b) we may wish to add features in future, and the first-generation terminals need to know when they encounter content which requires a second or later generation terminal.

Levels are a way of managing complexity.  I can think of several good reasons to have a level indicator, even if we have only one profile today:

a) others (e.g. the general internet) may wish to work with our specification but in a less restricted environment;

b) the high-end capability of terminals keeps rising;

c) at least the bandwidth available varies between delivery environments.

9 Input Modalities

It seems desirable to integrate well into the input devices available on the terminal:  special buttons, in particular.  Given the how clumsy using a virtual keyboard is, and often how clumsy navigating a pointer is, on phones, the usual desktop metaphor “assume only an alphanumeric keyboard and an easily-used pointing device” are unsatisfactory.  We need to be able to build portable scenes that nonetheless can detect and use the input buttons etc. available.  How do we do that? 

Questions, Suggestions
1/1
DIMS

