3GPP TSG SA4-ah-dims meeting
Tdoc S4-060267
April 11-12, 2006

Stockholm, Sweden

Source:
PSM DIMS AHG
Title:
Draft DIMS Functional Components
Document for:
Discussion
Agenda Item:
4.1.3
1 Introduction

This document is a first pass on breaking the DIMS specification into functional areas.

2 Functional Components

2.1 Scene description, graphical format

How are the elements of the presentation described? What is the graphics model, drawing space, and so on?

Both current proposals use SVG Tiny 1.2 for this.

Are there extensions to the base presentation description format?

What is the model for the way that the scene is composed (a) with media that is a ‘peer’ of the scene stream; (b) with media that is contained in or referenced from the scene? Is there handling of transparent/semi-transparent scenes, non-rectangular scenes (e.g. control overlays) and so on?

2.2 Scene update mechanism

DIMS requires that presentations can be modified and updated over time. How are these updates handled? This can include incremental updates, presentation chaining, and so on.

2.3 Overall timing model

What is the model for the timing and synchronization of (a) media that is a ‘peer’ of the DIMS stream (e.g. in a SMIL ‘par’) with it; (b) media that is contained in or referenced from the DIMS stream (e.g. an SVG ‘video’ element); (c) animations and other time-related activity in the DIMS scene itself; (d) timed media that are ‘parents’ of the DIMS stream in question?

2.4 Local User Interaction, scripting

How is local user interaction handled? This can consist of local event dispatching (SVG events) and/or scripting, DOM usage and so on.

What level of inspection and update does the DOM give to

a) the scene and the elements of the scene itself?

b) media included in the scene (graphics, text, audio, video etc.)?

c) the context in which the scene is included (e.g. an overall SMIL wrapper, 3GPP file)?

d) other elements within that parent context (e.g. parallel media streams)?

e) included sub-scenes (if any and allowed) and so on?

What mechanisms are there to enable the DIMS scene to detect the state/condition of included media (e.g. playable, recovering from error, tuning-in etc.)?

What reliance on contextual or scripting information logically outside the document object model is needed or required?

What is the scripting engine, and what basic ‘libraries’ or non-scene-specific functionality is provided in it?

2.5 Remote interaction

How is remote interaction handled (client feedback to the server)? Back-channels, protocols, etc.?

2.6 Compression

How are scenes and scene updates, and any other elements of the DIMS stream, compressed for transmission?

2.7 Container/Delivery Format

What are the format(s) used for containing DIMS streams, and how can they be packaged with the elements (video, audio, graphics, text etc.) that they use? Are there specific tools for multiplexing?

2.8 Error Resilience

What features are present at the media level to enable error detection and resilience? This can include techniques such as journaling (to detect what was lost), ‘optional I frames’, or more subtle techniques.

[Note that the system can always use error-resilience techniques at and below the transport, such as TCP, FEC, or network-level re-transmission (at least for unicast), and error-detection at the transport level (e.g. RTP packet-loss detection).]

2.9 Tune In, New streams and Re-synchronization

In continuous transmissions, how can a client tune-in into a DIMS stream in process? What is the content access procedure for continuous streams?

How are added included streams acquired (e.g. an additional a/v stream that should be included in the presentation)? What is the signaling of the added stream(s), how does the terminal acquire setup and configuration information, and so on?

2.10 Data management (e.g. Pre-loading and Post-caching)

What are the specific technologies specified for DIMS?

What provision is there for user preference management, terminal-side storage of scene-specific data, and so on?

[Note that included elements can be (and often are) re-used. In addition, services are much more pleasant if media that is needed can be supplied a little ahead of need, so that it is immediately displayable when inserted into the scene. All proposals can leverage transport-level caching (HTTP, FLUTE) and packaging (3GPP file format).]

2.11 Transport

Is there any other special handling of protocols and packaging than the obvious file-transfer (HTTP, FLUTE, MMS etc.) and streaming (RTP)?

How is DIMS carried in RTP? This must handle both 1-1 and 1-many (broadcast/multicast) scenarios, and discuss the handling of included time-based and non-time-based media.

2.12 Resource usage and Device capabilities

What access to aspects of the terminal capability are provided (UAProf, screen/audio capability etc.), also the availability of terminal resources and limits (e.g. the number of video streams that can be simultaneously decoded)?

How is DIMS usage of resources estimated, signaled, or adapted? This applies to questions such as bandwidth usage, and terminal resource usage (CPU, memory). What is the minimum required device capability?

2.13 Carriage of DIMS in existing sub-systems

What is specified for the use of DIMS in MBMS, PSS, MMS etc.? (This may belong as updates to those specifications).

What are the bit-rate levels (if any) that are set for DIMS streams in specific services?

DIMS functional areas
1/1
3GPP

