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1. Introduction

In this document, we present a subset of the simulation results that compare the performance of RS codes with that of Ideal FEC codes when used as application layer FEC for MBMS download and streaming services. In addition, we summarize the updated complexity figures for the decoding of RS codes.

2. FEC for MBMS Streaming

2.1 Complexity

Measurements of computational complexity for RS FEC decoding are performed over a mobile phone platform that uses the ARM 11 processor after SW-level optimizations. 

The metric used for complexity measurement is the % CPU usage computed over the whole buffering time.

The results presented are for average payload sizes of 400 bytes for 64 kbps, and 1000 bytes for bit rates >= 128 kbps. For all the cases a high amount of FEC (30%) is considered, in order to evaluate the complexity under hard conditions. For this reason, results have to be considered as upper bound for complexity.

[image: image4.emf]5.3%

*

4.0%*

N/A

N/A

1.0% (1.2%)

1D RS decoder  over 

20s buffering time 

(upper bounds)

ARM 11

1.42%

1.07%

N/A

N/A

0.26% (0.32%)

1D RS decoder  over 

20s buffering time 

(upper bounds)

FUTURE PLATFORM

N/A

3.9% (4.8%)*

3.7%(3.7%)

1.7%(1.9%)

0.3%(1.2%)

1D RS decoder  over 

5s buffering time      

(upper bounds)  

ARM 11

N/A384 kbps

N/A256 kbps  (180 kbps media= 

128 kbps video+52 kbps audio)

30%

(30 fps QCIF or 

7.5 fps CIF)

192 kbps (135 kbps media)

17%

(15 fps QCIF)

128 kbps (90 kbps media)

13%

(15 fps QCIF)

64 kbps  (45 kbps media)

AVC decoder

ARM 11

Bit rate

5.3%

*

4.0%*

N/A

N/A

1.0% (1.2%)

1D RS decoder  over 

20s buffering time 

(upper bounds)

ARM 11

1.42%

1.07%

N/A

N/A

0.26% (0.32%)

1D RS decoder  over 

20s buffering time 

(upper bounds)

FUTURE PLATFORM

N/A

3.9% (4.8%)*

3.7%(3.7%)

1.7%(1.9%)

0.3%(1.2%)

1D RS decoder  over 

5s buffering time      

(upper bounds)  

ARM 11

N/A384 kbps

N/A256 kbps  (180 kbps media= 

128 kbps video+52 kbps audio)

30%

(30 fps QCIF or 

7.5 fps CIF)

192 kbps (135 kbps media)

17%

(15 fps QCIF)

128 kbps (90 kbps media)

13%

(15 fps QCIF)

64 kbps  (45 kbps media)

AVC decoder

ARM 11

Bit rate


Results are shown in the following Table 1.

Table 1 – Complexity of RS decoding.

In the above table, complexity of RS decoding for MBMS streaming at different bearer bit rates are presented. These bit rates range between 64 kbps and 384 kbps. It has to be pointed out that these examples are provided to show the future-proofness of FEC codes in mobile terminals even at high bit rates. The examples do not imply that MBMS Rel. 6 networks will support such bit rates (the concrete deployment of networks that offer bit rates higher than 128 kbps is today a questionable issue). 

As reference, the second column of the bable contains complexity for AVC video decoding over an ARM 11 platform. Results higher than 192 kbps are not provided, as this platform is not well suited to support higher bit rates for AVC video.

In the above table, in round brackets are reporting the complexity values for usage of RS with hybrid padding, when the content is not MBMS-optimized. These are for 5s and 20s buffering time.

Results show that approximately the RS FEC decoder upper bound complexity is 10% the complexity of an AVC decoder, for 5s buffering. For 20s buffering protection, the upper bound complexity is between 1% and 5.3%. It has to be pointed out that result marked with (*) were obtained by stretching the capabilities of the test platform. In reality, for bit rates >=256 kbps, an adequate platform capable of processing these video bit rates would show a much lower figure for RS decoding.

For comparison, a yet more powerful platform is used and simulation results are reported in the last column. These show that the upper bound complexity for RS decoding is 1.42% for 384 kbps. Lower bit rates show a RS decoding complexity, which is negligible.

Conclusion: complexity of RS decoding for MBMS streaming is low enough over mobile terminals. Roughly a RS decoder uses 10% CPU compared to an AVC video decoder in order to run in real time. More powerful platforms can guarantee that the CPU load is well below 2% in all the cases. 

2.2 Performance

In this section, performance results for RS decoding of MBMS streaming are presented. The results presented are a combination of the following test case conditions:

· Bearer: 64kbps, 384 kbps

· Buffering time: 20s.

· UTRAN
· PDU BLER: 1%, 5%, 10%

· SDU size = 1000 bytes for 384kbps 

· SDU size = 400 bytes for 64kbps 

1D RS code (constant packet size/simple padding) with block interleaving for 20s buffering time is used. It is assumed the source traffic is MBMS-optimized (optimized video rate control).

Ideal FEC code is defined as one that guarantees successful decoding of a source block as soon as the receiver gets any combination of source and repair symbols (corresponding to that source block) whose total size is equal to the source block size, irrespective of the source block size.

The following plots show the mean time between loss (MTBL) and the probability of decoding failure of a source block as a function of FEC overhead. 

The operating point of interest in the graph is where the probability of decoding failure of a block is 10e-2. This corresponds to an MTBL of 20*100 = 2000 seconds. 

If the streaming duration is short, an operating point with MTBL > streaming duration is of interest. For example, for 10 minute streaming sessions, an operating point with MTBL > 600 seconds is of interest.

[image: image5.wmf]Mean Time Between Loss (sec)

Probability of Decoding Failure of a Block

1% BLER

5% BLER

10% BLER

1% BLER

5% BLER

10% BLER

MBMS Streaming, UTRAN 384 kbps, 20s Buffering

[image: image6.wmf]Mean Time Between Loss (sec)

Probability of Decoding Failure of a Block

1% BLER

5% BLER

10% BLER

1% BLER

5% BLER

10% BLER

MBMS Streaming, UTRAN 64 kbps, 20s Buffering


[image: image7.wmf] 



The following table summarizes the results from the graphs. It shows the 

minimum FEC overhead required to achieve an MTBL > 1000 seconds.

64kbps, 20s buffering





RLC PDU BLER
1%
5%
10%

Ideal FEC

4%
14%
26%

RS-1D

5%
14%
27%

384kbps,20s buffering





RLC PDU BLER
1%
5%
10%

Ideal FEC

4%
13%
26%

RS-1D

5%
16%
29%

Conclusion: For low bitrate streaming, the performance of RS-1D is very close to ideal FEC. For high bitrate streaming, RS-1D requires up to 3% more FEC overhead for the same performance. Therefore, for streaming RS performs nearly optimally compared to an ideal FEC code.

3. FEC for MBMS Download

3.1 Complexity

We present the RS-2D decoding time measurements on mobile phone platform ARM 11 after SW-level optimization. The entire 2-D grid is in the fast memory (RAM) while FEC decoding is performed. Decoding time is used as complexity metric (this is the user waiting time before being able to display the content).

CASE 1

· File size= 512 KB

· SDU size = 512 bytes (including headers)

· 30% FEC overhead

· 2D RS, N1=N2=37, K1=K2=32

· Download time = ~90s=1.5min over a 64 kbps bearer

· ARM 11 - Upper bound decoding time = 0.13s (with maximum losses in each dimension)

· Future platform – Estimated upper bound decoding time 0.035s.

CASE 2

· File size= 3 MB

· SDU size = 512 bytes (including headers)

· 30% FEC overhead, no parity over parity

· 2D RS, N1=N2=90, K1=K2=78

· Download time = ~550s=~9min over a 64 kbps bearer

· ARM 11- Upper bound decoding time = 1.6s (with maximum losses in each dimension)
· Future platform – Estimated upper bound decoding time 0.4s.
Conclusion: The RS decoding time is always a small fraction of the download time. For small files, the content is playable after less than half a second. For large files up to 3 MB the content is playable after less than two seconds. The given RS decoding times are absolute upper bounds. Worst-case error conditions are not always expected. Therefore, the RS decoding time is often shorter under normal conditions. With future platforms, the content is always playable after half a second.

3.2 Performance

We compare the performance of RS codes with ideal FEC code. 

Ideal FEC code is defined as one that guarantees successful decoding as soon as the receiver gets any combination of source and repair packets whose total size is equal to the file size, irrespective of the file size.

For large file sizes, we show the performance of ideal code, 2-D RS codes with sequential transmission order (row after row) and random transmission order. 

For small file sizes, we also show the performance of 1-D RS codes with block interleaving.

The following tables summarize the simulation conditions and the corresponding performance measured in terms of the minimum FEC overhead required to guarantee successful decoding for 99% of the users. 1000 users were simulated in each case.

The combination of SDU size = 512 bytes and PDU size = 640 bytes would result in re-alignment of SDU and PDU start-bytes very frequently (after every 2460 bytes), provided the start bytes are aligned at the beginning.

Alternatively, the combination of SDU size = 512 bytes and PDU size = 640 bytes would result in re-alignment of SDU and PDU start-bytes rarely (after every 327040 bytes), provided the start bytes are aligned at the beginning.

When there is frequent re-alignment between the start-bytes of SDU/PDUs, the average SDU loss is lower than the case with rare re-alignment. This results in smaller FEC overhead requirement to guarantee the same performance.

	FEC Overhead for 99% Successful Recovery with Frequent Alignment between SDU/PDU Start Byte
	
	
	

	
	
	
	

	
	
	
	

	SDU Size = 512 bytes(including header)
	
	
	

	PDU Size = 640 bytes
	
	
	

	Alignment between SDU/PDU Start Byte
	
	
	

	
	
	
	

	File Size = 3 MB (3*1024*1024 )
	
	
	

	RLC PDU BLER
	1%
	5%
	10%

	Avg SDU Loss 
	1.60%
	7.84%
	15.42%

	Ideal FEC
	3
	10
	21

	RS-2D-RandomTxOrder
	6
	12
	26

	RS-2D-SeqTxOrder
	6
	13
	26

	
	
	
	

	File Size = 1 MB (1024*1024)
	
	
	

	RLC PDU BLER
	1%
	5%
	10%

	Avg SDU Loss 
	1.60%
	7.84%
	15.42%

	Ideal FEC
	3
	11
	22

	RS-2D-RandomTxOrder
	8
	14
	26

	RS-2D-SeqTxOrder
	8
	15
	27

	
	
	
	

	
	
	
	

	
	
	
	

	File Size = 512 KB (0.5*1024*1024)
	
	
	

	RLC PDU BLER
	1%
	5%
	10%

	Avg SDU Loss 
	1.60%
	7.84%
	15.42%

	Ideal FEC
	3
	12
	23

	RS-2D-RandomTxOrder
	11
	16
	28

	RS-2D-SeqTxOrder
	12
	18
	30

	RS-1D-255
	5
	16
	29

	
	
	
	

	File Size = 50 KB (50*1024)
	
	
	

	RLC PDU BLER
	1%
	5%
	10%

	Avg SDU Loss 
	1.59%
	7.84%
	15.42%

	Ideal FEC
	7
	19
	33

	RS-2D-RandomTxOrder
	17
	33
	46

	RS-2D-SeqTxOrder
	24
	35
	Xxx

	RS-1D-255
	7
	19
	33


	FEC Overhead for 99% Successful Recovery with Rare Alignment between SDU/PDU Start Bytes
	
	

	
	
	
	

	
	
	
	

	SDU Size = 511 bytes(including header)
	
	
	

	PDU Size = 640 bytes
	
	
	

	No Alignment between SDU/PDU Start Byte
	
	
	

	
	
	
	

	File Size = 3 MB (3*1024*1024 )
	
	
	

	RLC PDU BLER
	1%
	5%
	10%

	Avg SDU Loss 
	1.79%
	8.78%
	17.17%

	Ideal FEC
	3
	11
	23

	RS-2D-RandomTxOrder
	7
	14
	30

	RS-2D-SeqTxOrder
	7
	14
	29

	
	
	
	

	File Size = 1 MB (1024*1024)
	
	
	

	RLC PDU BLER
	1%
	5%
	10%

	Avg SDU Loss 
	1.79%
	8.77%
	17.20%

	Ideal FEC
	4
	12
	25

	RS-2D-RandomTxOrder
	8
	15
	31

	RS-2D-SeqTxOrder
	11
	16
	31

	
	
	
	

	File Size = 512 KB (0.5*1024*1024)
	
	
	

	RLC PDU BLER
	1%
	5%
	10%

	Avg SDU Loss 
	1.79%
	8.77%
	17.19%

	Ideal FEC
	4
	14
	27

	RS-2D-RandomTxOrder
	11
	17
	31

	RS-2D-SeqTxOrder
	11
	22
	32

	RS-1D-255
	5
	17
	32

	
	
	
	

	File Size = 50 KB (50*1024)
	
	
	

	RLC PDU BLER
	1%
	5%
	10%

	Avg SDU Loss 
	1.82%
	8.78%
	17.19%

	Ideal FEC
	8
	21
	40

	RS-2D-RandomTxOrder
	17
	34
	Xxx

	RS-2D-SeqTxOrder
	26
	43
	Xxx

	RS-1D-255
	8
	21
	40


Conclusions: 

The difference between the performance of ideal FEC codes and the appropriate RS code depends on the file size, RLC PDU BLER and the frequency of SDU/PDU start-byte alignment.

For very small file sizes (that can fit into a single source block), RS-1D performance is better than RS-2D under all BLER conditions. RS-1D performance exactly matches that of the ideal FEC.

For small file sizes, RS-1D performs better than RS-2D under low and medium BLER conditions;

the difference between RS-2D and RS-1D is negligible under high BLER conditions.

For medium and large file sizes, RS-2D performs better than RS-1D under all BLER conditions.

The following table further summarizes the results from the above two tables. It shows the additional FEC overhead required by appropriate RS code when compared to ideal FEC code.





Gap from Ideal FEC




Aligned SDU/PDU       Not Aligned SDU/PDU

Large file size: (RS-2D)

        2%-5% 

3%-7%

Medium file size: (RS-2D)

        3%-5%

3%-6%

Small file size: (RS-1D)

        2%-6%

1%-5%

Very Small file size: (RS-1D)  
            0%

   0%   

Frequent alignment between SDU/PDU start-bytes improves the performance of all FEC codes (including ideal FEC).  If this is achieved without a major penalty (e.g., large header overhead, padding), applications and network elements should strive to achieve frequent SDU/PDU alignment.

4. Discussion

4.1 Streaming tune-in delay

For longer protection periods, for example 20s protection period, we recommend dividing the large source blocks into small source blocks and use block interleaving over a protection period to protect against bursty cell change losses. For example, we divide the large source block of 20s duration into four small blocks of 5s duration each. The receiver must wait for at least 20s to receive the entire large source block and de-interleave. Then the FEC decoder can start decoding the first small source block and pass it on to the media decoder immediately. If the decoding of the small source block is spread over the entire duration of 5s, the total delay due to FEC buffering and decoding is only 20 + 5 = 25s. 

When the receiver joins the session in the middle of a source block, tune-in delay analysis is illustrated in the next two pages. We assume that the RS-decoding is spread over the entire protection period, i.e., while the next source block is being buffered, the current source block is FEC decoded so that FEC decoding is done in real-time. We also assume that the decoding of Raptor codes can be done in 1s irrespective of the source block size.
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For small protection periods, where the data can fit into one RS source block, the tune-in delay analysis is shown below.
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Conclusion: For all protection periods of interest, even if RS-decoding is spread over the entire protection period, the difference between the tune-in delay of RS codes and Raptor codes is at most 4s. In any case, for both FEC codes, the user is subject to high tune-in delays (different from those the user is used in traditional TV or radio).

4.2 Considerations on buffering for streaming

Buffering is generally used to enable smooth playout of streamed media. In MBMS, buffering can also be used to protect the stream against cell change losses.

However, a careful consideration on buffering size must be done. This impacts the user tune-in delay, and the user channel zapping delay. For example, by choosing a large buffer size, a user needs to wait more time before starting the stream playback and wait more time before mid-stream tune-in. If channel zapping is enabled in MBMS, switching between channels may take a considerable time (in the order of 10-20s, depending on the buffer size), which is too long compared to zapping delay over traditional TV receivers.

RS codes can be customized to provide protection over long buffering times. For example a large source block corresponding to 20s buffering time can be split into 2 or more smaller blocks over which RS codes are applied. The resulting source and repair packets of all small blocks in a 20s buffering period are sent in a block interleaved order. Use of small source blocks keeps the RS decoding complexity manageable. Interleaving over a 20s buffering duration provides protection against cell change losses, thus compensating to some extent the performance loss due to the use of smaller blocks.

The choice of the right buffer size is always a trade off between user tune-in delays, channel-zapping delay, allocated phone memory, and protection against cell change losses. The tune-in delay can generally be minimized by using more CPU resources in the beginning for FEC-decoding more data. The RS-decoder can be set to output the decoded source packets with the required pace, and usually in a continuous fashion, not as a single instantaneous burst.

In relation to cell change losses, this effect is greatly mitigated by the soft/selective-combining feature standardized in MBMS Rel. 6, where the loss is expected to be close to zero. In general, over-dimensioning the FEC for the worst-case network and loss scenario is not a good engineering approach. An adequate FEC protection should work against normal radio link losses and the most frequent cell change losses, not the absolute worst cases.

4.3 Memory usage of 2-D RS Codes for download

For download, the amount of memory required = Memory for 2-D grid + additional memory for FEC decoding each row or column

FEC memory requirements are not a problem for current and future mobile phones that come with RAM of 16-128 MB, for which there is no need to use any slow memory for FEC decoding. In addition, smart memory management algorithms can be used (these may not be subject of standardization).

When the entire 2-D grid is stored in the fast memory (RAM), there is no need to use any slow memory. The decoding times presented in this document reflect the total decoding time when the entire 2-D grid is stored in the RAM.

5. ConclusionS

· RS decoding complexity is well manageable on all relevant platforms that support upcoming MBMS services. 

· RS codes can be tailored to work with any bearer speed and any protection period for streaming.

· For low bitrate streaming, RS codes perform very close to ideal FEC codes and require <= 1% additional FEC overhead (they can be regarded as optimal). For high bitrate streaming with large protection periods, RS codes require slightly more additional FEC overhead (1-3% at most) compared to ideal FEC codes to achieve same MTBL.

· For download of small files, RS codes perform close to ideal FEC. For download of large files, RS codes require slightly more additional FEC overhead (1-6% at most) when compared to ideal FEC codes to achieve the same decoding. 

· Frequent alignment between SDU/PDU start-bytes improves the performance of all FEC codes (including ideal FEC).  If this is achieved without a major penalty (e.g., large header overhead, padding), applications and network elements should strive to achieve frequent SDU/PDU alignment.
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