3GPP TSG Video Ad-Hoc
Tdoc S4-AHP199
3 Feb 2005, Phone

Source:
David Singer, Apple

Title:
Collated requirements for a mandatory MBMS video codec

Document for:
Discussion

Agenda Item:

1. Introduction

This contribution contains a collation of what I think I read and what I think I heard from last week’s call. It attempts to set out either conditions on the process we follow, or conditions we might impose on implementations. I am not proposing all these, but I think that we do need to agree on a document of this kind.

There are some general questions here, notably whether we mandate some kind of error resilience better than ‘wait for an IDR’. If we do not, then the measured visual quality of the consequently lost frames is abysmal; and if the anchors (H.263 and MPEG-4) do some kind of error concealment, we set a high bar if what we test and make the mandated minimum behavior does not.

There are also user-experience implications. It is better to show corrupt video that contains at least some information, or nothing at all? Our experience is the latter (‘the video was awful but I saw the goal happen’ vs. ‘everything I saw was perfect but it dropped out at the critical moment’); but that implies at least ‘copy the previous frame’ error concealment for lost slices.

2. Background

There are four cases to consider:

1) Error-free.

2) 'Light' errors with FEC, where 'light' means that the FEC can and does correct them.

3) 'Light' errors without FEC, i.e. an FEC would have corrected them if it had been used.

4) 'Heavy' errors, i.e. the stream is incorrect even if FEC is used.

Note that the vast majority of what is written below only applies to case (3), since case (2) reduces to case (1) from the video codec’s point of view, and in case (4) we permit stopping playback.

3. Process Requirements

p1) When the anchors are encoded at 50% higher bit-rate, SA4 should be satisfied that H.264 performs as well as or better than the best of the anchors under no loss and with 0.5%, 1.0% and 1.5% loss (four cases). [[Question: what error resilience is used in the anchors, that is, in the H.263 and MPEG-4 decoders? The 'best' of today's existing practice?]]

p2) The source code that achieves (1) should be an SA4 reference code (if necessary both encode/packetize and depacketize/decode).

4. Decoder Requirements

d1) The decoder must continue to ‘play’ error-free, and lightly-errored streams (with or without FEC). On heavily-errored streams (with or without FEC) it may indicate 'loss of signal' and cease decoding

d2) The depacketizer must handle lost packets without crashing; it may choose to pass only whole NALUs to the decoder (i.e. discard fragments of incompletely received NALUs).

d3) The decoder must handle the loss of NALUs without crashing. (Note that since parameter sets are supplied out of band and SEIs are not mandated, this effectively means lost slice-data NALUs).

d4) The combined depacketizer/decoder must not crash when presented with streams that were valid and then been subject to any degree of packet loss. (It may error-conceal or pause, see below, but not crash).

d5) In the presence of 'light' errors, the decoder must perform error concealment, and continue playing. It must not wait for an IDR. The decoder must implement at least the error concealment schemes used and documented in the reference code, or schemes that perform as well or better. It may implement additional error resilience. (Alternative: wait for an IDR, but see the discussion above).

d6) The decoder should not rely on the presence of GDR SEI messages to indicate self-healing streams, though if it receives them, it must resume play at the point at which it has received enough data for it to know that the stream has healed.

d7) When RTP packets are lost (discontinuities in the RTP sequence number), the decoder may indicate to the user (whether it pauses or not) that there are reception problems.

d8) Under heavy errors or loss of connectivity, the decoder may indicate 'loss of signal' and pause. Loss of connectivity is indicated by an empty input buffer (buffer under-run).

d9) The decoder should track the sender’s clock, using the RTP timestamps and sender reports, so as to avoid buffer under-run or over-run caused by clock-drift. [[This is actually quite hard]]

5. Encoder Requirements

e1) The encoder must use an IDR frequency of [once every FEC block/once every buffer-fullness/once every n seconds] or must use GDR to ensure that every macroblock is 'healed' within the same period. GDR SEI messages should be sent, but as they are in-band, they may be lost.

e2) The encoder must packetize to the appropriate MTU for the network. Those MTUs are either dynamically determined (which is hard for MBMS) or the value(s) … should be used.

e3) The encoder must not drop so many frames as to cause a buffer under-run in the decoder, i.e. it must code at least 2 frames within each buffer-period. (Does this ban slide-shows? ed). [[Note that requiring 1 frame within each buffer period is risky both under loss and under clock adjustment]]

e4) The encoder should strive not to use fragmented NALUs, as generally a decoder may have to discard the fragments that did arrive.

2

