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1. Introduction

The present contribution describes simulations of the Raptor codes.  These simulations are based on the Raptor MBMS streaming spec [5], which in turn is based [1], [2], [3], [6], [7].  These simulations show that the Raptor code exceeds all of the current and future requirements of an MBMS streaming service.  The simulations provided here compare the performance of Raptor to that of Reed-Solomon (and to that of an ideal FEC code) for various choices of parameters according to the criteria described in [4].

2. Source RTP packet size variations and symbol size

As explained in [8], source RTP packet sizes and the distribution on source RTP packet sizes can vary widely, both within a stream and between streams.  Thus, it is important that an FEC code can efficiently handle variations in packet sizes.  In particular, the choice of the symbol size for the FEC code turns out to be crucial.  The longer the symbol size the more transmission bandwidth is required for a given level of playback quality for a given set of loss conditions.  Some FEC codes become more and more inefficient as the number of encoding symbols grows, e.g., Reed-Solomon codes, and beyond some number of encoding symbols they become completely impractical, i.e., 255 encoding symbols for Reed-Solomon.  As shown in the simulations of Section 4, FEC codes that cannot work efficiently with a lot of small symbols lead to high decoding complexity and high transmission overhead.  The end result is a trade-off similar in spirit to that shown in Figure 1 of  [9], i.e., with Reed-Solomon codes there is a poor trade-off between decoding complexity and transmission overhead, where no point along the trade-off is close to optimal, whereas Raptor is simultaneously very close to optimal in both measures.

2.1. Examples of source RTP packet size variation

Figures 1-6 provide examples of size statistics for source RTP streams.  These streams were generated specifically for 3GPP MBMS applications, i.e., a maximum packet size that is consistent with what is recommended for MBMS was used when generating the RTP stream.  To generate these figures, packet sizes from the source RTP stream were grouped into buckets of 10 bytes each, e.g., all packets of size between 291 bytes and 300 bytes were put into the same bucket.  The X-axis is labeled with the mid-point of the size associated with each bucket, e.g., 295 bytes, and the Y-axis shows how many of the packets in the stream fell into that bucket.  As an example, the point (295, 187) in Figure 1 indicates that 187 of the packets were between 291 bytes and 300 bytes in size.   It should be noted that there is a large variation of packet sizes within a stream, and that even the shape of the distribution between streams of the same rate vary quite dramatically.  Thus, even if it were useful, it would be hard to predict in advance the different distributions on packet sizes that would occur in an MBMS streaming service.
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Figure 1 – 64 Kbps Bourne stream
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Figure 2 – 90 Kbps Foreman stream
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Figure 3 – 90 Kbps Paris stream
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Figure 4 – 48 Kbps stream used for Simulation A
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Figure 5 – 384 Kbps Manga3G stream
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Figure 6 – 384 Kbps stream used for Simulation B
2.2. Effect of symbol size on transmission bandwidth 

The number of source symbols that need to be recovered using repair symbols is the total number of source symbols in the source block spanned by the missing source RTP packets, including the wasted bytes associated with each such missing packet.  The wasted bytes are the bytes recovered by a full-length repair symbol at the end of a partially filled last source symbol of a source RTP packet in the source block.  These are wasted because bytes of the repair symbol are used to recover their values even though their values are known to be zeroes. Thus, the wasted bytes of the missing source RTP packets adds to the overall reception overhead necessary to recover the source block.

The choice of the symbol size T is crucial because, due to size variations in the source RTP packets, the larger the symbol size the more wastage there is, which directly contributes to the reception overhead, which in turn directly impacts the amount of transmission bandwidth overhead needed to provide a given level of protection to the stream against packet loss.  With the Raptor code, the value of T can be chosen to be rather small for smaller blocks, e.g. T = 32 bytes, and the complexity of decoding is very small for all source block sizes of interest.  Thus, even though there is a small reception overhead inherent in the Raptor code, because the symbol size T can be so small with a Raptor code the overall reception overhead is very modest.   

However, if the symbol size used with a different FEC code cannot be small, then even if the inherent reception overhead of the FEC code is zero, like it is with a Reed-Solomon code, the overall reception overhead can grow to be significant, and thus overall such an FEC code will require more transmission bandwidth overhead than the Raptor code to provide a given level of protection.

As an example of this effect, suppose that a UTRAN 64 Kbps bearer rate stream is to be protected against 10% random PDU loss using encoding blocks that are 40 KB in length (this is 5 seconds of streaming), and that the average payload length of a source RTP packet is 400 bytes in length.  This translates into an average RTP packet length of 444 bytes (after adding the IP/UDP/RTP header and the 4 byte FEC Payload ID).  If the repair packets are also 400 bytes then the total number of packets in a source block is around 90.  It turns out that 33% packet loss must be protected against in order that the failure to receive enough packets from the source block to decode is at most 1e-3, and this means that the original source block must be recoverable from 60·400 bytes of received encoding symbols.

Using Raptor with a symbol size of T = 32, the inherent reception overhead of Raptor is 400 bytes, and the expected wastage contribution to reception overhead is approximately (T/2)·60·0.33 = 317 wasted bytes, and thus the number of source RTP packets needs to be 58 to ensure that 60*400 bytes are received, leading to a streaming rate of 37 Kbps.  

Reed-Solomon codes have no inherent reception overhead, but the wastage overhead turns out to be significant.  For Reed-Solomon codes the symbol size has to be around 200 bytes in order to ensure that there are at most 255 symbols in the source block, and thus the wastage contribution to reception overhead is approximately (200/2)·60·0.33 = 2 KB, and thus the number of source RTP packets needs to be 55 to ensure that 60·400 bytes are received, leading to a streaming rate of 35 Kbps.  Thus, even though Reed-Solomon has no inherent reception overhead, it still performs worse than Raptor in terms of the quality of stream it can deliver for a given bearer-streaming rate. The fact that Reed-Solomon is far from optimal with respect to transmission overhead is counter-intuitive and goes against the folklore that Reed-Solomon are optimal for MBMS streaming (see for example Section 3 of [11]).  The simulation results in Section 4 provide examples of this phenomenon.  As can be seen from these results, the practical difference between the transmission bandwidth overhead required by RS256 and Raptor for a given mean time between SDU loss is similar to what the above analysis suggests.

For this example the decoding complexity of Raptor when there is 33% packet loss is around 240 KB of XORs of bytes, whereas the decoding complexity of Reed-Solomon is equivalent to around 2.4 MB of XORs of bytes. Decoding complexity issues are discussed in more detail in Section 5. 
3. Simulation methodology

The different FEC codes considered are the Raptor codes, using the Raptor MBMS streaming specification for streaming as described in [5], an appropriate version of Reed-Solomon codes based on RS256 (see [11] and [12]), and an idealized FEC code (which is an extension of the idealized FEC code described in [4]).  The performance results for the ideal FEC code are used as a baseline to judge how far away from optimal other FEC codes are.  For all the FEC codes, the FEC packet architecture described in [6] is used in the simulations, and thus the packet header overheads and structures used for all FEC codes are the same.

In each simulation a fixed streaming rate is chosen for the MBMS streaming session (the stream consists of the variable length source RTP packets), and a fixed overall transmission rate is set (the transmission stream includes the source RTP packets and the repair RTP packets).  The source RTP packet payload size varies in all simulations according to properties of the original stream. The 48 Kbps simulations are derived from a source RTP packet sequence that corresponds to Figure 4.  The 384 Kbps simulations are derived from a source RTP packet sequence that corresponds to Figure 6. The repair RTP packet payload sizes are fixed for each session to a length that is a best choice the symbol length used (as described in [6]). The total length of SDUs for the source RTP packets is their payload length plus 44 bytes (for the IP/UDP/RTP headers and the 4 byte FEC Payload ID appended to the end of each source RTP packet). The total length of SDUs for the repair RTP packets is their payload length plus 46 bytes (for the IP/UDP/RTP headers and the 6 byte FEC Payload ID).

All simulations use UTRAN with the PDU size set to 640 bytes. 

For each simulation, PDU packet loss sequence is generated, and then the SDUs are mapped sequentially onto the PDU packet loss to derive the SDU packet loss sequence.  An SDU packet loss sequence is simply a sequence of zeroes (indicating SDU not lost) and ones (indicating SDU lost) together with the size of the SDU.   In all simulations only random link loss was modeled, but it is also important to consider losses due to cell change losses, and this indicates using even longer source block sizes and corresponding protection periods then considered in the simulations below to protect against a couple of seconds of loss without excessive transmission bandwidth overhead.

Random uniform PDU loss of 10% is used in all the simulations.  The methodology used to generate a packet loss sequence is the following.  A PDU packet loss sequence is first generated using a random number generator with a specified average loss fraction.  Then, the methodology described in [4] is used to generate an SDU packet loss sequence from this, appropriately modified to take into account the variable length SDU packets and using the methodology described in [6].  For each source block, all source RTP packets are first mapped to PDUs followed by all repair RTP packets.

For each simulation, for each FEC code, the relationship between the protection amount and the mean time between failures is graphed.  The mean time between failures is the average time between lost SDUs (as defined in [4]).  The protection amount is the ratio of the total number of bytes of repair symbols to the total number of bytes in source RTP packet payloads in the source block.  This is rounded up so that an integral number of repair RTP packets are sent.  For example, if the protection amount is 0.25, then the total length in bytes of repair symbols generated and sent is 0.25 times the total length in bytes of the source RTP packet payloads in the source block, i.e., the bytes in the source block that are padding, header or represent the length of a packet are not included in this.

For the Reed-Solomon code the inherent FEC coding reception overhead is zero, but as explained in Section 2.2 there is a significant reception overhead that translates into transmission overhead due to the variable length source RTP packets.  RS256 codes were chosen because they minimize this reception overhead and consequent transmission bandwidth overhead among Reed-Solomon parameters that are being considered (limited to field elements that are one byte long).  Reed-Solomon codes that use less than 255 encoding symbols will have higher transmission bandwidth overheads for the same mean time between failure and less decoding complexity, whereas Reed-Solomon codes that use more than 255 encoding symbols, while theoretically possible, would be rather impractical in terms of decoding complexity and haven’t even been proposed.

The simulation results for Raptor use a reception overhead of 0.01.  At this reception overhead the Raptor decoding failure probability is so small that there is no measurable difference between the results if it were assumed to be zero.

In all simulations 200 receivers were simulated.

The computational speed of both FEC encoding and decoding is important, but since decoding is performed on the UE the FEC decoding work is of primary importance.  The decoding work is expressed in terms of the number of bytes exclusive-ored together for Raptor, and in terms of the number of table look-up operations and bytes exclusive-ored together for Reed-Solomon codes.  It should be noted that for Raptor codes the exclusive-or operations are performed on symbols that are several bytes in length (ranging from 32 bytes up to 512 bytes), and thus these operations can be pipelined in a way that makes them very efficient to compute, i.e. most CPUs can exclusive-or several bytes together at a time and the bytes to be exclusive-ored together can be pipelined to the CPU, and thus the code can be highly optimized to perform such exclusive-or operations.   On the other hand, the table-lookup operations of Reed-Solomon codes must necessarily be performed byte by byte, and thus the same optimizations are not possible.  Thus, for the same decoding work value the Raptor codes will be faster than Reed-Solomon codes.  In the decoding work results we present in this document we have multiplied the decoding workload for Reed-Solomon codes by a factor of two to take into account this discrepancy, and in practice we have found that this minor adjustment is typically somewhat exaggerating the actual decoding speed of Reed-Solomon codes.

4. Simulations and results 

In this section simulation results are provided for a 48 Kbps and a 384 Kbps stream.  Note that [11] states that 48 Kbps streams should be considered in simulations, and [10] indicates that 384 Kbps streams are relevant for the MBMS service.  

Simulation A: 

RTP source stream rate: 48 Kbps

PDU loss rate: 10%

Protection period: 5 seconds

Average source stream data in a protection period: ~30 KB

Raptor repair packet payload size: 480 bytes

Ideal repair packet payload size: 500 bytes

Reed-Solomon repair packet payload size: varies between 342 bytes and 496 bytes depending on protection amount (best choice made for each protection amount)

Simulation B:

RTP source stream rate: 384 Kbps

PDU loss rate: 10%

Protection period: 5 seconds

Average source stream data in a protection period: ~240 KB

Raptor repair packet payload size: 512 bytes

Ideal repair packet payload size: 510 bytes

Reed-Solomon repair packet payload size: 502 bytes (best choice based on maximum source RTP packet payload size of 488 bytes)

Simulation C:

RTP source stream rate: 384 Kbps

PDU loss rate: 10%

Protection period: 20 seconds

Average source stream data in a protection period: ~960 KB

Raptor repair packet payload size: 512 bytes

Ideal repair packet payload size: 510 bytes

Reed-Solomon repair packet payload size: 502 bytes (best choice based on maximum source RTP packet payload size of 488 bytes)
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Figure 7 – Simulation A
Figure 7 shows the trade-off between the protection amount (shown on the X-axis) and the mean time between failures (shown on the Y-axis, measured in seconds) for Simulation A.  For this simulation, the primary reason for the gap between the protection amount required for Raptor versus RS256 for a given mean time between failures is due to the wastage overhead described in Section 2.2.  For each of the two FEC codes, there is one source block per 5 second protection period.
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Figure 8 – Simulation B
Figure 8 shows the trade-off between the protection amount and the mean time between failures for Simulation B.  For this simulation, the reason for the gap between the protection amount required for Raptor versus RS256 for a given mean time between failures is primarily because for RS256 the source block length is shorter because a 5 second protection period of the stream is too large for RS256 to handle as a single source block.  The largest encoding block size that RS256 can handle is around 125 KB (255 encoding symbols times the encoding symbol length, where an encoding symbol is at most the size of the largest SDU, which is around 500 bytes).  Thus, in this case RS256 partitions the source RTP stream into shorter source blocks and interleaves them over 5 second protection periods to protect against burst loss.
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Figure 9 – Simulation C

Figure 9 shows the trade-off between the protection amount and the mean time between failures for Simulation C.  Note that the gap between the protection amount required for Raptor versus RS256 for a given mean time between failures is larger than for Simulation B.  

In each simulation the protection amount is varied. In the case of Reed-Solomon, this means that the actual FEC code itself changes, e.g., the symbol size is different in order to minimize transmission bandwidth overhead, and thus it would be very tough to change the protection amount on the fly in future MBMS streaming services using Reed-Solomon.  With Raptor it is trivial to change the protection amount on the fly, because Raptor codes can generate as many encoding packets as desired on the fly, and thus Raptor codes provide complete flexibility.  This could be very useful in future MBMS streaming services if Raptor is selected.

5. Decoding complexity

For Raptor codes the decoding work is as described in [3], and the average decoding workload is always very modest (at most 15 when packet loss rates are high, closer to 5 when packet loss rates are low).

For RS256, the decoding complexity is generally much higher than for Raptor.  For example, in Simulation B, to achieve a 10 second mean time between failures (which is not very high quality) requires the RS256 decoder to recover from over 30% source symbol loss.  The decoding complexity of RS256 at this loss rate is at least 20 times that of Raptor.  

From [11], the decoding time for RS256 of a 3 MB file on a Series 60 Symbian platform when there is approximately 25% SDU loss is around 20 seconds using 100% of the CPU, which corresponds to a decoding rate of just over 1 Mbps.  Extrapolating those decoding performance results to this streaming situation where the loss is 30%, the CPU utilization would be over 40% to decode the source block if the decoding were spread over the maximum time possible, i.e., over a 5 second protection period.  (The decoding can’t be spread over a longer time because then the decoding is not keeping up with the streaming rate.)  Spreading the decoding over an entire protection period means the overall delay added by the RS256 code is two protection periods, or 10 seconds in this example.  If a shorter overall delay is desired, this means decoding in less than a protection period of time.  For example, if decoding is spread over just 2 seconds instead of 5 then the required CPU utilization during decoding is 5/2 as large, i.e., over 100% in this example for RS256.  

All of these issues are even more pressing if the protection period is longer, e.g., a 20 second protection period to overcome a few seconds of loss due to a cell change, as some of the major operators have requested.  In this case, doubling the overall delay due to spreading FEC decoding over the entire protection period is very noticeable, i.e., the end user delay is 40 seconds instead of 20 seconds.  Thus, performing the FEC decoding over a much smaller period of time than the protection period, e.g., decoding in 5 seconds when the protection period is 20 seconds, has significant advantages.  However, decoding over 5 seconds using RS256 in this example results in a CPU utilization of over 160%, which clearly cannot be achieved.  For all these scenarios, the Raptor CPU utilization is under 10%, and in some cases well under 10%.

One would imagine that the CPU of the UE is being used for functions other than FEC decoding during the streaming session.  For example, the CPU may be used to assist in receiving packets, in playing out the stream, or the customer may be using the UE for other purposes while the streaming is in progress.  In any case, it is reasonable to assume that the maximum percentage of the CPU allotted to FEC decoding should be below a prescribed percentage, e.g., below 10%.    If the CPU utilization for FEC decoding goes over the allotted percentage then there may be an undesirable glitch in one of the other functions of the UE, e.g., a glitch in the streaming playback.  Thus, it is crucial that the maximum required percentage of the CPU for FEC decoding is always respected by the FEC decoding.  Furthermore, if there is a governor applied to the FEC decoding that doesn’t allow its CPU utilization to go above a prescribed percentage and if the FEC decoding requires more than the prescribed percentage it will not finish decoding the source block in time for the playback and thus there will be effectively SDU loss in the playback.   For streaming, it is the worst-case FEC decoding time that matters, and this worst case must satisfy some very tight CPU constraints.

Battery life is another important issue that is related to CPU utilization.  Because FEC decoding is a continuous process for streaming, if the FEC decoder continuously requires a lot of CPU then it can have a detrimental impact on battery life.

6. Conclusions and Proposal

It is hard to know a priori all of the different loss conditions and types of applications that may be deployed with the MBMS streaming service. However, it is clear that once the MBMS service is deployed it is hard to redeploy it due to conditions that were different than expected that result in high levels of customer dissatisfaction.  

Raptor codes have the property that they will provide close to optimal performance independent of the packet loss, streaming rates, protection periods and protection amounts, with the ability to flexibly adjust to changes dynamically, to be provided in the future with the MBMS streaming service, and thus Raptor codes are a good choice to ensure that there are no negative surprises for operators in future deployments of the MBMS streaming service.

Thus, the proposal is to adopt Raptor codes for MBMS streaming.
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