3GPP SA4-PSM SWG#6
Tdoc S4-AHP143

October 11-13 2004, Newbury UK
Agenda Item: 4.4.1

Source:
Digital Fountain

Title:
Raptor MBMS streaming specification
Document for:
Information and Decision
1 Introduction

The present contribution specifies how to use the Raptor systematic code specified in [1], [2] and [3] to protect an MBMS source RTP packet stream from loss using the FEC framework described in [8] and the FEC architecture described in [7]. The overall descriptions, terminology, variable names, conventions and references of [1], [2], [3], [8] and [7] are assumed in this document.

The Raptor code properties meet all of the current and future requirements of an MBMS streaming service. The basic properties of Raptor for streaming are that, for any packet loss conditions, for streams of any rate: (a) required transmission bandwidth for a given play-out quality of the stream is minimized; (b) the CPU requirements on UEs is minimal.

Raptor is a fountain code (as for example defined in [6]), i.e., as many encoding packets as needed can be generated on-the-fly, each containing unique encoding symbols that are equally useful for recovering a source block of the stream. There are many advantages to using fountain codes versus other types of FEC codes, some of which are described in [6]. One advantage is that it is possible to flexibly adjust the number of encoding packets generated and sent for each source block to protect the stream, either in different sessions or within the same session as packet loss conditions dynamically vary.

The encoding and decoding complexity of Raptor is low even when a source block is partitioned into many relatively short source symbols, whereas other FEC codes need to use relatively long symbols to be efficient. The source RTP packets are of different lengths that are not multiples of the symbol length, and thus the last symbol of each source RTP packet is padded out to a full-length symbol in the source block that is used to produce repair RTP packets, and this padding adds to the transmission bandwidth necessary to provide a given level of protection to the stream. Since shorter symbols lead to less padding, Raptor uses close to the least amount of transmission bandwidth possible for a given quality of protection, thereby making it possible to maximize the play-out quality within a given transmission bandwidth budget. Other FEC codes such as Reed-Solomon need to use higher transmission bandwidth than Raptor to provide the same play-out quality.

The decoding complexity of Raptor is very low and remains constant and very predictable independent of packet loss conditions, whereas the decoding complexity of Reed-Solomon codes is highly dependent on the amount and pattern of packet loss, and thus the Reed-Solomon decoding complexity is highly variable and unpredictable depending on packet loss conditions. This is especially important for streaming because of the real-time requirements on decoding. Not being able to decode a source block in time for play-out has the same negative impact on play-out quality as losing the source block. Thus, it is the decoding complexity for the worst-case packet loss that must be taken into account when deciding how much of the CPU must be allocated in the UE for FEC decoding. For example, a Reed-Solomon code that requires 2% of the CPU on average but requires 50% of the CPU under the worst packet loss conditions is not a viable option if only 15% of the CPU is allocated for FEC decoding. With Raptor codes, the decoding can be done for all relevant MBMS streaming rates using only a very small percentage of a typical UE CPU, even in the worst-case packet loss conditions, a statement that cannot be made for Reed-Solomon codes. Furthermore, even higher streaming rates than currently envisioned and less powerful CPUs than currently envisioned are possible using Raptor codes.

Since for the MBMS streaming service the variety of future packet loss, UE available CPU resources, UE battery life considerations and streaming rates are hard to predict, it is important to choose an FEC solution that is as flexible as possible to work well under all conditions. Raptor codes provide maximum flexibility and efficiency unmatched by other FEC codes.
2 Session information
The FEC Object Transmission Information consists of the FEC Encoding ID and FEC Instance ID for Raptor applied to streaming, and the symbol size T. The recommended method for determining T for Raptor is based on the projected source block size B for the session as shown in Table 1. Table 1 also shows the range for the number K of source symbols in the source block based on the range of the projected source block size, although K will not be in this range if the actual source block size is not in the range of the projected source block size.

	Projected source block size range
	T
	K range

	16 B ≤ B ≤ 64 KB
	32 bytes
	1 ≤ K ≤ 2 K

	64 KB < B ≤ 128 KB
	64 bytes
	1 K ≤ K ≤ 2 K

	128 KB < B ≤ 256 KB
	128 bytes
	1 K ≤ K ≤ 2 K

	256 KB < B ≤ 512 KB
	256 bytes
	1 K ≤ K ≤ 2 K

	512 KB < B ≤ 2 MB
	512 bytes
	1 K ≤ K ≤ 4 K

Table 1 – Choice of symbol size T
Generally, a source block is formed based on collecting source RTP packets over a fixed interval of time or until the source block size exceeds a certain preset maximum, e.g., 5 second intervals and 1.2 times the average amount of data in 5 seconds of streaming. Generally it is possible to project the source block size to a reasonable degree. However, it may be the case that the actual source block size varies from the projected size significantly. Nevertheless, almost always the actual source block size is reasonably close to the projected size, and the consequences of a wrong projection are not major, i.e., different values for T and range for K is used rather than what is suggested in Table 1 for the actual source block size.

3 Raptor sender and receiver

The Raptor sender behaves exactly as the FEC sender described in [8] and [7], with the only missing specific Raptor systematic codec details described here.

3.1 Raptor systematic encoder
Once the number K of source symbols is known for the source block to be encoded, generate the K source symbol triples (d[0], a[0], b[0]), … , (d[K-1], a[K-1], b[K-1]) as follows from the systematic information (T, A, B, M[0], …, M[T-1]) associated with K described in [2]. In the description below P = 65521 is the largest prime number smaller than 216, and L’ is the smallest prime that is at least the number L of intermediate pre-coding symbols.

Generate K source symbol triples

· Set i = 0, j = 0, t = 0, X = B.
· While i < K do

· If t < T and j = M[t] then t = t+1

· Else

· d[i] = Deg[Rand[X, 0, 220]

· a[i] = 1 + Rand[X, 1, L’-1]

· b[i] = Rand[X, 2, L’]

· i = i+1

· X = (X + A) % P
· j = j + 1
Then, use the Raptor decoder described in [1] to recover the L intermediate pre-coding symbols from the K source symbols using the K triples for source symbols.
The ESI values placed into the R repair RTP packets are K, K+G, K+2·G, … , K+(R-1)·G, respectively. The G repair symbol triples (d[0], a[0], b[0]), … , (d[G-1], a[G-1], b[G-1]) for the repair symbols placed into a repair RTP packet with ESI i are computed as follows.

Generate G repair symbol triples for repair packet with ESI i

· X = (B + (i+T)·A)) % P
· v = Rand[X, 0, 220]

· Repeat the following for j = 0,…,G-1

· d[j] = Deg[v]

· a[j] = 1 + Rand[X, 1, L’-1]

· b[j] = Rand[X, 2, L’]
· v = (v + ceil(220/G)) % 220
· X = (X + A) % P
The total number of unique repair symbols generated for repair RTP packets is at most P - N, where N is (1+o)K and o is the overhead of the Raptor code chosen, see [1] and [2].

The encoder described in [3] to generate the G repair symbols from the L intermediate pre-coding symbols using the G triples associated with the repair RTP packet carrying the repair symbols.

3.2 Raptor systematic decoder
The Raptor receiver behaves exactly as the FEC receiver described in [8] and [7]. To decode, the Raptor receiver first detects if any source RTP packets are missing, and if none are missing then no decoding is necessary. If some are missing then it checks to see if it has received enough repair RTP packets to recover the missing source RTP packets. If so, it decodes the missing source RTP packets using the Raptor systematic decoder as follows:

· From the systematic information (T, A, B, M[0], …, M[T-1]) associated with K, generate the K source symbol triples using the algorithm in Section 3.1.
· From received source RTP packets, determine which source symbols have been received.
· From the ESIs in received repair RTP packets, generate the triples for the received repair symbols using the algorithm in Section 3.1.
· Use the decoder described in [1] to recover the L intermediate pre-coding symbols from the received source symbols and repair symbols using their corresponding triples.

· Use the encoder described in [3] and the triples for the missing source symbols to recover the missing source symbols from the L intermediate pre-coding symbols.

The systematic information associated for K can be computed for all relevant values of K once and for all and packaged with the Raptor decoder software to receivers. Alternatively, receivers may calculate the systematic information using the algorithm described in [2] for relevant values of K on an as needed basis. As another alternative, a mixed strategy can be used, where the systematic information for some values of K is packaged with the Raptor decoder software and as systematic information for other values of K is needed the receiver computes this on the fly, and once computed potentially saved for later use.

4 References

[1] “Raptor decoder specification”, Digital Fountain, 3GPP SA4-PSM SWG#6, Newbury UK, Agenda item 4.4.1,Tdoc S4-AHP140, October 11-13 2004

[2] “Raptor systematic specification”, Digital Fountain, 3GPP SA4-PSM SWG#6, Newbury UK, Agenda item 4.4.1,Tdoc S4-AHP141, October 11-13 2004

[3] “Raptor encoder specification”, Digital Fountain, 3GPP SA4-PSM SWG#6, Newbury UK, Agenda item 4.4.1,Tdoc S4-AHP139, October 11-13 2004

[4] M. Luby, L. Vicisano, J. Gemmell, L. Rizzo, M. Handley, J. Crowcroft, “Forward Error Correction (FEC) Building Block”, RFC 3452, December 2002

[5] M. Luby, L. Vicisano, “Compact Forward Error Correction (FEC) Schemes”, RFC 3695, February 2004

[6] A. Shokrollahi, “Raptor Codes”, Digital Fountain Technical Report, DF2003-06-001

[7] “FEC packet architecture for MBMS streaming”, Digital Fountain, 3GPP SA4-PSM SWG#6, Newbury UK, Agenda item 4.4.1,Tdoc S4-AHP138, October 11-13 2004

[8] “FEC Framework for MBMS streaming”, Ericsson, Digital Fountain, NEC, Vidiator, 3GPP SA4-PSM SWG#6, Newbury UK, Agenda item 4.4.1,Tdoc S4-AHP159, October 11-13 2004

