3GPP SA4-PSM SWG#6
Tdoc S4-AHP140

October 11-13 2004, Newbury, UK
Agenda item: 4.4.1

Source:
Digital Fountain
Title:
Raptor decoder specification
Document For:
Information and Decision

1. Introduction

This document describes the Raptor decoder that corresponds to the Raptor encoder described in [5]. The overall description of the Raptor code, the terminology, variable names, conventions and references of [5] are assumed in this document. Only the additional elements needed to describe the decoder are included in this document.

2. Decoding a source block

This document describes how the Raptor decoder decodes a source block. For this document it is assumed that the decoder knows the structure of the source block it is to decode, including the symbol length and the number K of symbols in the source block. Other documents describe how this source block structure is obtained for particular applications such as file delivery and streaming. This document describes the Raptor decoder that corresponds to the Raptor encoder described in [5].

 From the algorithms described in [5], the Raptor decoder can calculate the total number L = K+S+H of pre-coding symbols and determine how they were generated from the source block to be decoded. In this document it is assumed that the received encoding symbols for the source block to be decoded are passed to the decoder. Furthermore, for each such encoding symbol it is assumed that the number and set of pre-coding symbols that were exclusive-ored to calculate the encoding symbol is passed to the decoder. This information is dependent upon the particular application, e.g., streaming or file download, and how this information is obtained is described in other documents.

Let N ≥ K be the number of received encoding symbols for a source block and let M = S+H+N. The following M by L bit matrix A can be derived from the information passed to the decoder for the source block to be decoded. Let C be the column vector of the L pre-coding symbols, and let D be the column vector of M symbols with values known to the receiver, where the first S+H of the M symbols are zero-valued symbols that correspond to static and half symbols (these are check symbols for the static and half symbols, and not the static and half symbols themselves), and the remaining N of the M symbols are the received encoding symbols for the source block. Then, A is the bit matrix that satisfies A·C = D, where here · denotes matrix multiplication over GF[2]. In particular, A[i,j] = 1 if the pre-coding symbol corresponding to index j is exclusive-or’d into the static, half or encoding symbol corresponding to index i in the encoding, or if index i corresponds to a static or half symbol and index j corresponds to the same static or half symbol. For all other i and j, A[i,j] = 0.

Decoding a source block is equivalent to decoding C from known A and D. (This is equivalent to recovering the K source symbols since if they can be recovered then the other L-K pre-coding symbols can be recomputed.) It is clear that C can be decoded if and only if the rank of A over GF[2] is L.

The first step in decoding C is to form a decoding schedule. In this step A is converted, using Gaussian elimination (using row operations and row and column reorderings) and after discarding M – L rows, into the L by L identity matrix. The decoding schedule consists of the sequence of row operations and row and column re-orderings during the Gaussian elimination process, and only depends on A and not on D. The decoding of C from D can take place concurrently with the forming of the decoding schedule, or the decoding can take place afterwards based on the decoding schedule.

 The correspondence between the decoding schedule and the decoding of C is as follows. Let c[0] = 0, c[1] = 1…,c[L-1] = L-1 and d[0] = 0, d[1] = 1…,d[M-1] = M-1 initially.

· Each time row i of A is exclusive-ored into row i’ in the decoding schedule then in the decoding process symbol D[d[i]] is exclusive-ored into symbol D[d[i’]] .

· Each time row i is exchanged with row i’ in the decoding schedule then in the decoding process the value of d[i] is exchanged with the value of d[i’].

· Each time column j is exchanged with column j’ in the decoding schedule then in the decoding process the value of c[j] is exchanged with the value of c[j’].

From this correspondence it is clear that the total number of exclusive-ors of symbols in the decoding of the source block is the number of row operations (not exchanges) in the Gaussian elimination. Since A is the L by L identity matrix after the Gaussian elimination and after discarding the last M – L rows, it is clear at the end of successful decoding that the L symbols D[d[0]], D[d[1]], …, D[d[L-1]] are the values of the L symbols C[c[0]], C[c[1]], …, C[c[L-1]].

The order in which Gaussian elimination is performed to form the decoding schedule has no bearing on whether or not the decoding is successful. However, the speed of the decoding depends heavily on the order in which Gaussian elimination is performed. (Furthermore, maintaining a sparse representation of A is crucial, although this document does not describe the details of how this is done). The remainder of this section focuses on the order in which Gaussian elimination should be performed.

2.1. First Phase

The first phase of the Gaussian elimination the matrix A is conceptually partitioned into submatrices. The submatrix sizes are parameterized by non-negative integers i and u which are initialized to 0. The submatrices of A are:

(1) The submatrix I defined by the intersection of the first i rows and first i columns. This is the identity matrix at the end of each step in the phase.

(2) The submatrix defined by the intersection of the first i rows and all but the first i columns and last u columns. All entries of this submatrix are zero.

(3) The submatrix defined by the intersection of the first i columns and all but the first i rows. All entries of this submatrix are zero.

(4) The submatrix U defined by the intersection of all the rows and the last u columns.

(5) The submatrix X formed by the intersection of all but the first i columns and the last u columns and all but the first i rows.

Figure 1 illustrates the submatrices of A. At the beginning of the first phase X = A. In each step, a row of A is chosen. The following graph defined by the structure of X is used in determining which row of A is chosen. The columns that intersect X are the nodes in the graph, and the rows that have exactly 2 ones in X are the edges of the graph that connect the two columns (nodes) in the positions of the two ones. A component in this graph is a maximal set of nodes (columns) and edges (rows) such that there is a path between each pair of nodes/edges in the graph. The size of a component is the number of nodes (columns) in the component.

	Identity matrix I
	All zeroes
	U

	All zeroes
	X
	

Figure 1 – Submatrices of A in the first phase
There are at most L steps in the first phase. The phase ends successfully when i + u = L, i.e. when X and the all zeroes submatrix above X have disappeared and A consists of I, the all zeroes submatrix below I, and U. The phase ends unsuccessfully in decoding failure if at some step before X disappears there is no non-zero row in X to choose in that step. In each step, a row of A is chosen as follows:

Row Choice

· If all entries of X are zero then no row is chosen and decoding fails.

· Let r be the minimum integer such that at least one row of A has exactly r ones in X.

· If r ≠ 2 then choose a row with exactly r ones in X with minimum original degree among all such rows.

· If r = 2 then choose any row with exactly 2 ones in X that is part of a maximum size component in the graph defined by X.

After the row is chosen in the step the first row of A that intersects X is exchanged with the chosen row so that the chosen row is the first row that intersects X. The columns of A among those that intersect X are reordered so that one of the r ones in the chosen row appears in the first column of X and so that the remaining r-1 ones appear in the last columns of X. Then, the chosen row is exclusive-ored into all the other rows of A below the chosen row that have a one in the first column of X. Finally, i is incremented by 1 and u is incremented by r-1, which completes the step.

2.2. Second Phase

The submatrix U is further partitioned into the first i rows, UU, and the remaining M – i rows, UL. Gaussian elimination is performed in the second phase on UL to either determine that its rank is less than u (decoding failure) or to convert it into a matrix where the first u rows is the identity matrix (success of the second phase). Call this u by u identity matrix UI. The M – L rows of A that intersect UL – UI are discarded. After this phase A has L rows and L columns.

2.3. Third Phase

After the second phase the only portion of A which needs to be zeroed out to finish converting A into the L by L identity matrix is UU. The number of rows i of the submatrix UU is generally much larger than the number of columns u of UU. To zero out UU efficiently, the following precomputation matrix UE is computed based on UI in the third phase and then UE is used in the fourth phase to zero out UU. The u rows of UI are partitioned into ceil(u/7) groups of 7 rows each. Then, for each group of 7 rows all non-zero combinations of the 7 rows are computed, resulting in pow(2,7)- 1 = 127 rows (this can be done with pow(2,7)-7-1 = 120 exclusive-ors of rows per group, since the combinations of Hamming weight one that appear in UI do not need to be recomputed). Thus, the resulting precomputation matrix UE has ceil(u/7) ·127 rows and u columns. Note that UE is not formally a part of matrix A, but will be used in the fourth phase to zero out UU.

2.4. Fourth Phase

For each of the first i rows of A, for each group of 7 columns in the UU submatrix of this row, if the set of 7 column entries in UU are not all zero then the row of the precomputation matrix UE that matches the pattern in the 7 columns is exclusive-ored into the row, thus zeroing out those 7 columns in the row at the cost of exclusive-oring one row of UE into the row.

After this phase A is the L by L identity matrix and a complete decoding schedule has been successfully formed. Then, as explained in Section 2, the corresponding decoding consisting of exclusive-oring known encoding symbols can be executed to recover the source block based on the decoding schedule.

Only rows corresponding to recovering a source symbol need be considered in this phase if only the source symbols and not all the pre-coding symbols are to be decoded. However, for the systematic Raptor codes described in [6] all of the pre-coding symbols need be recovered.

3. Other considerations

The Raptor decoder described in this document does not correspond to a systematic code, i.e., all of the original source symbols of a source block are not necessarily among the encoding symbols that are sent. However, the companion document [6] describes how to modify the Raptor encoder described in [5] and the Raptor decoder described in this document to design a systematic Raptor code, albeit at the cost of slightly more complex encoding and decoding and slightly higher encoding and decoding workloads.
4. References

[1] M. Luby. “LT Codes”, Proceedings of The 43rd Annual IEEE Symposium on Foundations of Computer Science, November 16-19 2002, pp. 271-282.
[2] A. Shokrollahi, “Raptor Codes”, Digital Fountain Technical Report, DF2003-06-001

[3] J. Byers, M. Luby, M. Mitzenmacher, “A Digital Fountain Approach to Asynchronous Reliable Multicast”, IEEE J. on Selected Areas in Communications, Special Issue on Network Support for Multicast Communication, Vol. 20, No. 8, October 2002, pp. 1528 – 1540

[4] T. Paila, M. Luby, R. Lehtonen, V. Roca, R. Walsh, “FLUTE - File Delivery over Unidirectional Transport”, IETF RMT working group, RFC 3926, October 2004

[5] “Raptor encoder specification”, Digital Fountain, 3GPP SA4-PSM SWG#6, Newbury UK, Agenda item 4.4.1,Tdoc S4-AHP139, October 11-13 2004

[6] “Raptor systematic specification”, Digital Fountain, 3GPP SA4-PSM SWG#6, Newbury UK, Agenda item 4.4.1,Tdoc S4-AHP141, October 11-13 2004
