3GPP SA4-PSM SWG#6
Tdoc S4-AHP139

October 11-13 2004, Newbury UK
Agenda Item: 4.4.1

Source:
Digital Fountain
Title:
Raptor encoder specification
Document For:
Information and Decision

1. Introduction

The present contribution and companion documents [5] and [6] specifies an FEC code suitable for the MBMS file delivery and streaming services. The FEC code, hereafter called Raptor, has properties that meet all of the current and future requirements of these services.

The Raptor encoder produces encoding symbols from source blocks. In this document, we provide a simple and easy to implement description of the Raptor encoder. For a more technical description of the theory that underlies the design and analysis of Raptor, see for example [1], [2]. The companion document [5] describes the corresponding Raptor decoder. The document [6] describes how to modify the Raptor code to make it systematic.

Raptor is a fountain code (as for example defined in [2]), i.e., as many encoding symbols as needed can be generated by the encoder on-the-fly from the source symbols of a source block. The decoder is able to recover the source block from any set of encoding symbols only slightly more in number than the number of source symbols. There are many advantages to using fountain codes versus other types of FEC codes, some of which are described in [2] and [3].

One advantage is that the reception overhead and the encoding and decoding complexity are independent of the number of encoding symbols lost and the encoding symbol loss patterns. In particular, the encoding and decoding complexity is always linear in the source block length, and the reception overhead is a very small percentage of the source block length, over the entire range of short to long source blocks.

Another advantage is the ability to combine received encoding symbols generated at independent senders to reconstruct a source block. This is particularly useful for file download when using a P2P repair server to send encoding symbols to UEs that do not receive enough encoding symbols in the MBMS session.

Another advantage is that the complexity of Raptor encoding and decoding remains efficient even when the symbol length is rather small and when the number of source symbols in the source block is rather large. This is advantageous because it allows the source block to be partitioned with finer granularity using Raptor codes than is possible using other FEC codes. This is particularly useful for streaming when the original source packets are variable length.

For file download, Raptor minimizes overall transmission time and bandwidth when packet loss conditions range from minimal to severe for any size file. For streaming, Raptor minimizes the amount of bandwidth required to provide any desired level of protection against packet loss when packet loss conditions range from minimal to severe for any stream rate. Thus, Raptor codes provide efficiency and flexibility unmatched by other FEC codes.

1.1. Notation

We use the following notation hereafter. For a positive value x let floor(x) be x rounded down to the nearest integer and let ceil(x) be x rounded up to the nearest integer. For positive integers i and j let i % j denote i modulo j. For example, 11 modulo 3 = 2.

For equal-length bit strings X and Y let X ^ Y denote the bit-by-bit exclusive-or of X and Y. For example, 1010 ^ 1100 = 0110.

Let K denote 1,024, let M denote 1,024·K and let B denote bytes. For example, 2 KB denotes 2,048 bytes, 3 KB denotes 3,072 bytes and 1 MB denotes 1,048,576 bytes.

1.2. Gray Sequences

We use a Gray sequence in the description of the generation of the half symbols in the pre-coding step, as described below. For all positive integers i, let g[i] be defined as follows. Let b[i] be the highest order bit that is different in the binary representation of i-1 and i. Then, the binary representation of g[i] is obtained by flipping bit b[i] of g[i-1]. Table 1 provides some example values for g[i]. Note that g[·] has the property that each pair of consecutive elements in the sequence differ in exactly one bit position.

	i [in binary]
	g[i] [in binary]

	0000
	0000

	0001
	0001

	0010
	0011

	0011
	0010

	0100
	0110

	0101
	0111

	0110
	0101

	0111
	0100

	1000
	1100

	1001
	1101

	1010
	1111

	1011
	1110

	1100
	1010

	1101
	1011

	1110
	1001

	1111
	1000

Table 1 – Gray sequence g[·]
We also use the function cnt[i], where cnt[i] returns the number of bits that are set to one in the binary representation of i. For example the binary representation of 25 is 11001, and thus cnt[25] = 3.

For any fixed positive integer j let g[·,j] be the subsequence of g[·] where for each element in the sequence exactly j bits are set to 1. Thus, g[·,j] can be defined based on g[·] as follows.

· c = 0, i = 0

· Do forever

· While (cnt(g[c]) ≠ j) do c = c+1

· g[i,j] = g[c]

· c = c+1

· i = i+1

For example, g[0,2] = g[2], g[1,2] = g[4], g[2,2] = g[6], g[3,2] = g[8], g[4,2] = g[12], etc. Note that g[·,j] has the property that each pair of consecutive elements in the sequence differ in exactly two bit positions. For all i ≥ 1, let Pos1[i,j] be one of the bit positions in which g[i,j] and g[i-1,j] differ and let Pos2[i,j] be the other bit position in which they differ. For example, Pos1[2,2] = 0 and Pos2[2,2] = 1.

1.3. Work

The complexity of encoding and decoding is measured in terms of the number of bytes of symbols that are exclusive-ored together or copied, which is defined to be the work. Thus, for example, if a symbol is 64 bytes long, then computing the exclusive-or of two symbols counts as 64 bytes of work, and copying a symbol from one location to another also counts as 64 bytes of work. The total encoding and decoding times depend also on the amount of bookkeeping operations that are needed to determine which symbols are exclusive-ored together or copied. But since the symbols are typically relatively long, and since when there are multiple source blocks the bookkeeping operations are done only once and can be amortized over all the source blocks, the exclusive-or and copy operations of symbols provide a rough estimate of the relative time it takes to encode and decode on different CPU/OS platforms. Furthermore, the efficiency of the bookkeeping operations are implementation dependent, and in an efficient implementation the bookkeeping operations take a fraction of the time that the exclusive-or and copy operations take.
2. Encoding overview

Symbols are the fundamental data units of the encoding and decoding process, and for each source file all symbols are the same size, typically a few bytes long. The atomic operation performed on symbols for both encoding and decoding is the exclusive-or operation.

A pre-coding step is used to produce L-K redundant symbols from the K source symbols, where L > K, and the combination of the K source symbols and the L-K redundant symbols form the L pre-coding symbols. Section 3 describes how the pre-coding symbols are generated from the source symbols.

Each encoding packet contains a Encoding Symbol ID (ESI) and encoding symbols. The ESI is used to generate a (d,a,b)-triple for each encoding symbol carried in the encoding packet using the generators described in Section 4, although the exact details of how the ESI is used to is application specific and beyond the scope of this document. Then, each (d,a,b)-triple is used to generate the corresponding encoding symbol from the pre-coding symbols as described in Section 4.3.
3. Pre-coding

The pre-coding step consists of generating redundant symbols from the K source symbols as follows. The redundant symbols consist of S LDPC symbols and H half symbols. Let X be the smallest positive integer such that X·(X–1) ≥ 2·K. The value of S is the smallest positive prime integer that is at least ceil(0.01·K) + X. The value of H is the smallest integer such that choose(H,ceil(H/2)) ≥ K + S, where H’ = ceil(H/2) and where choose(i,j) denotes the number of ways j objects can be chosen from among i objects without repetition. Then L = K+S+H. Let the positions of the pre-coding symbols range from 0 to L-1, where the first K are the source symbols, the next S are the LDPC symbols, and the final H are the half symbols.

For i = 0,…,L-1 let C[i] denote the ith pre-coding symbol. Note that C[0], …, C[K-1] are the original source symbols. Initialize all the redundant symbols C[K],…,C[L-1] to all zeroes.

The S LDPC symbols are defined as follows.

· For i = 0,…,K-1 do

· a = 1 + (floor(i/S) % (S-1))

· b = i % S
· C[K + b] = C[K + b] ^ C[i]

· b = (b + a) % S
· C[K + b] = C[K + b] ^ C[i]

· b = (b + a) % S
· C[K + b] = C[K + b] ^ C[i]

The H half symbols are defined as follows.

· For h = 0,…,H-1 do

· For i = 0,…,K+S-1 do

· If bit h of g[i,H’] is equal to 1 then C[h+K+S] = C[h+K+S] ^ C[i].

Equivalently, the H half symbols can be defined as follows, which suggests an efficient implementation:

· T = C[0].

· For i = 1,…,K+S-1 do

· C[Pos1[i,H’]+K+S] = C[Pos1[i,H’]+K+S] ^ T.

· C[Pos2[i,H’]+K+S] = C[Pos2[i,H’]+K+S] ^ T.

· T = T ^ C[i].

· For all bit positions h of g[K+S-1,H’] that are equal to 1 do

· C[h+K+S] = C[h+K+S] ^ T.

4. Generators

All of the generators described in the following subsections are used in the generation of encoding symbols.

4.1. Random Generator

The random number generator Rand[X, i, m] is defined as follows, where X is a two-byte value, i is a non-negative integer and m is a positive integer and the value produced is an integer between 0 and m-1. Let X0 be first byte and let X1 the second byte of X. Let V0 and V1 be arrays of 256 entries each, where each entry is a random 4-byte unsigned integer. Then,

Rand[X, i, m] = (V0[(X0 + i) % 256] ^ V1[(X1 + i) % 256]) % m
4.2. Degree Generator

The degree generator Deg[v] is defined as follows, where v is an integer that is at least 0 and less than 220 = 1048576.

· In Table 2, find the index j such that f[j-1] ≤ v < f[j]

· Deg[v] = d[j]

	Index j
	f[j]
	d[j]

	0
	0
	--

	1
	10241
	1

	2
	491582
	2

	3
	712794
	3

	4
	831695
	4

	5
	 948446
	10

	6
	1032189
	11

	7
	1048576
	40

Table 2 – Defines the degree distribution for encoding symbols
4.3. Encoding Symbol Generator

Let L be the number of pre-coding symbols of the source block, let L’ be the smallest prime integer greater than or equal to L, and let C[0],…, C[L-1] be the pre-coding symbols of the source block. The encoding symbol generator Enc[d, a, b] is defined as follows, where d is a degree, a is between 1 and L’-1 and b is between 0 and L’-1.
· While (b ≥ L) do b = (b + a) % L’
· Enc[d, a, b] = C[b].
· For j = 1,…,d-1 do

· b = (b + a) % L’
· While (b ≥ L) do b = (b + a) % L’
· Enc[d, a, b] = Enc[d, a, b] ^ C[b]
5. Encoding work per source block

The work to produce the LDPC symbols is 3 times the total length in bytes of the source symbols. The work to produce the half symbols is essentially 3 times the total length in bytes of the source symbols. Thus, the total work for generating the pre-coding is 6 times the total length in bytes of the source symbols.

From the degree distribution described in Section 4.2 via Table 2, it is not hard to see that the work on average to generate encoding symbols is 4.63 times the total length in bytes of the encoding symbols generated.

6. Other considerations

The Raptor encoder as described in this document is not systematic, i.e., all of the original source symbols of a source block are not necessarily among the encoding symbols that are generated. However, the companion document [6] describes how to modify the Raptor encoder described in this document and the corresponding Raptor decoder described in [5] to design a systematic Raptor code, albeit at the cost of slightly more complex encoding and decoding and slightly higher encoding and decoding workloads
7. References

[1] M. Luby. “LT Codes”, Proceedings of The 43rd Annual IEEE Symposium on Foundations of Computer Science, November 16-19 2002, pp. 271-282.
[2] A. Shokrollahi, “Raptor Codes”, Digital Fountain Technical Report, DF2003-06-001

[3] J. Byers, M. Luby, M. Mitzenmacher, “A Digital Fountain Approach to Asynchronous Reliable Multicast”, IEEE J. on Selected Areas in Communications, Special Issue on Network Support for Multicast Communication, Vol. 20, No. 8, October 2002, pp. 1528 – 1540

[4] T. Paila, M. Luby, R. Lehtonen, V. Roca, R. Walsh, “FLUTE - File Delivery over Unidirectional Transport”, IETF RMT working group, RFC 3926, October 2004

[5] “Raptor decoder specification”, Digital Fountain, 3GPP SA4-PSM SWG#6, Newbury UK, Agenda item 4.4.1,Tdoc S4-AHP140, October 11-13 2004

[6] “Raptor systematic specification”, Digital Fountain, 3GPP SA4-PSM SWG#6, Newbury UK, Agenda item 4.4.1,Tdoc S4-AHP141, October 11-13 2004
