TSG System Aspects WG#4
S4-AHP119
PSM ad hoc, Lund, Sweden, 5-7 April 2004


Source:
Nortel Networks

Title:
Forward error correction – Source block size
Document for:
Discussion and decision

Agenda Item:
MBMS - 4.1.1.3

1. Introduction

This paper discusses the question of source block size for MBMS Forward Error Correction. When forward error correction is applied, the file to be transmitted is usually divided into source blocks and the FEC code applied independently to each source block.

There are considerable advantages to choosing the source block size to be as large as possible. In fact if possible the whole file should be considered as a single source block. We discuss these advantages in Section 2 below.

However, there are also several factors which lead to a need to limit the source block size. We consider these factors in Section 3 below and describe a technique to mitigate at least one of these.

We conclude that source blocks size should be chosen to be as large as possible, subject to the constraints of Section 3.

2.
Advantages of large source block size

The principle advantage of choosing a large source block size is that, by limiting the total number of source blocks, then packet erasures are more evenly distributed between source blocks. When there are a larger number of source blocks, then there is a greater chance that more packets than necessary are received for any given source block. These extra packets are useless at the receiver and represent a wasted overhead – i.e. the overhead at the sender (the code rate) needs to be significantly higher than the expected channel loss. (For example, in out tests, coding over 4 source blocks added some 17% to the transmission overhead for the same failure probability – a rate 0.62 RS code sending over a channel with loss rate 21% still failed for 4% of receivers).

Additionally, some of the factors which lead to a need for shorter source blocks also require that the blocks are sent sequentially (rather than interleaved). This means that the receiver must wait for all the packets from one source block to arrive before it can start work on the next one, which is problematic if the source block has in fact been successfully recovered before all packets have been received. This would be the case, for example, if the channel loss rate was less than expected for a given receiver. Additionally, lack of interleaving further increases the transmission overhead required in the presence of bursty losses. 

Where there are many source blocks, the result is that all receivers wait until almost the end of transmission before they have recovered the file.

By contrast, if the file was encoded as a single source block, then receivers experiencing lower channel loss would recover the file much earlier.

Recovering the file early has two principle advantages:

· Improved user experience

· Opportunity to save resources by stopping transmission earlier

There are at least two techniques which could be applied to save resources by stopping transmission early. These are by using statistical feedback to optimise the overall session time, or by cell-by-cell management of the session end. Both techniques allow the use of radio resources to be better managed and optimised – which after all is the very purpose of MBMS.

2.1
Statistical feedback

This approach works by obtaining feedback from the receivers about the number that are remaining which have not completely received the file. The sender can then choose exactly when to stop transmission based on the target receiver success probability. Hence the load on any ‘repair service’ can be exactly managed.

To avoid the network being flooded by feedback from the receivers, feedback would be provided only when requested by the sender, through some indication in the multicast data stream. Furthermore, only receivers who had not received the file should respond. Finally, the sender would initially request that only a small percentage of such receivers should respond. If no responses are received, the request is repeated with a larger percentage. Eventually, it would be safe to ask for 100% of unsuccessful receivers to respond. In this way the sender can estimate the exact number of receivers that have not yet received the file, whilst keeping the feedback load small and independent of the number of receivers.

2.2
Cell-by-cell management

SA2 has defined a concept of Session ID to identify repeated MBMS sessions. It is intended that receivers could “opt out” of sessions that they have already received. Such users might not be considered in the procedures used to determine transmission mode in each cell.

A receiver may determine during a session that the session has been successfully received (i.e. if the file is completely reconstructed before session stop – this might be the case in a cell with low congestion losses, or if the UE is in good radio conditions). The ability for receivers to “opt out” of a session during a session may allow transmission to be terminated earlier in some cells, thereby saving resources in those cells.

However, such a mechanism would require further discussion in SA2 and RAN groups.

3.
Constraints on source block size

There are three main constraints on source block size:

· For streaming, play-out delay

· Computational complexity

· Overall memory requirement

· Working memory requirement

We discuss each of these in the sections below.

3.1
Play-out delay

Play-out of a source block cannot usually begin until the source block has been decoded. The size of the source block is therefore limited by the acceptable delay between session start and beginning of play-out of the stream.

It should be noted that the user may not be aware of the time at which session data starts to be sent. So the user may not be aware of the full play-out delay – the terminal may even buffer several minutes of the stream before alerting the user.

However, for many services, prompt presentation is a key component of the service (for example, sports clips).

3.2
Computational complexity

For some codes, the computational workload grows non-linearly as source block size grows. This places a practical constraint on the source block sizes. This is particularly the case for Reed-Solomon codes.

3.3
Overall memory requirement

The amount of memory required to decode an FEC code is a multiple of the source block size. This multiple depends on the code – for some codes it is 1, whereas for others it may be as high as R-1, where R is the code rate.

Obviously, a device must have at least as much memory as the total file size to decode a file download and it must have at least as much memory as required for the play-out buffer for a streaming service.

Additionally, if the memory overhead described above is greater than one, then additional memory is required. This may therefore place a limitation on the source block size.

For example, if a file to be downloaded is 1MB in length, the code rate is 2/3 and the memory requirement is 1.5 times source block size, then 1.5MB of memory is required if the code is encoded as a single source block. Splitting it into two source blocks means that 1.25MB is required (0.5MB to store the first decoded block and 0.75MB for the decoding of the second).

3.4
Working memory

Decoding a forward error correction code requires the received and decoded symbols to be stored in fast random access memory whilst they are processed. In some devices, the amount of such memory is limited, with the bulk of device memory being for slower bulk data storage.

This provides a additional limit on the source block size.

However, there is an interleaving technique which can overcome this limitation, allowing the FEC code to effectively protect the entire file as if it were encoded as a single source block, but decoding in working memory that is much smaller than the size of the file. The size of the effectively single source block can then be chosen according to the constraints described in sections 3.1 and 3.2 above.

This technique is described in [1] for Raptor Codes, but can be generalized as follows:

1. Choose a source block size as large as possible according to working memory limitations

2. Choose a symbol size such that there are N symbols in each source block, where N = File Size/Packet size

3. Construct a single ‘interleaved source block’ consisting of the first symbol from each source block, followed by the second symbol from each source block etc.

4. Apply the code to this single ‘interleaved source block’ considering each packet to be a single code symbol. So, a code symbol (=source packet) consists of a single symbol from each source block

5. At the receiver, split each packet into individual symbols and write these to the slow storage according to the source blocks they relate to.

6. read back the data for each source block in turn into fast storage (just once) and process according to the FEC code. The calculation of how to reconstruct each missing source symbol need only be performed once, since the same code and erasure pattern is applied to each block.

This process is illustrated in the following figure:


[image: image1.emf]Source file

Source blocks

Source symbols

Encoding

packets

Received

packets

Source packets Parity packets

Interleaving

Interleaved 

source block

… FEC coding

De-interleaving

FEC decoding

Compared to encoding each source block separately, this procedure adds a single write/read cycle to and from the slow mass storage for each symbol of the file. In the case that source block constraints from sections 3.1 and 3.2 allow a significantly larger block than the working memory constraint, this is a small price to pay for the additional protection and reduction in transmission overhead.

4.
Conclusion

This contribution discussed several advantages of maximizing the source block size for FEC codes. Specifically:

· Reduction in transmission overhead resulting from uneven distribution of errors across source blocks

· Earlier decoding of the file in good radio conditions/low congestion cells, leading to

· Improved user experience

· Opportunities for optimization by ending transmission earlier

Furthermore, we discussed four constraints on the source block size:

· For streaming, play-out delay

· For certain codes, such as Reed-Solomon, computational complexity

· The total memory available for storing and decoding the data

· For certain devices, availability of working memory to perform the decode

We presented an interleaving technique which overcomes the last of these.

We propose, therefore, that further work on MBMS Forward Error Correction should be based on the assumption that the source block size is maximized, subject to the first three constraints discussed here.

References

[1]
Mobile data broadcast delivery using FEC codes, Digital Fountain Technical Report DF2004-03-001, Michael Luby and Amin Shokrallahi, http://www.digitalfountain.com/technology/researchLibrary/index.cfm
1
1

_1142068080.ppt






Source file

Source blocks

Source symbols













Encoding

packets

Received

packets

Source packets

Parity packets

Interleaving

Interleaved source block









… FEC coding









De-interleaving

















FEC decoding








