3GPP TSG-SA4 PSM SWG Ad Hoc Meeting
Tdoc S4-AHP109

5-7 April 2004, Lund, Sweden

Source:
Nokia

Title:
FLUTE Usage in MBMS Download

Document for:
Discussion and decision

Agenda Item:
4.1.1.2

1 Introduction

FLUTE [1] is the working assumption transport protocol used to deliver files (e.g., images, video or audio clips) for MBMS download [7].

As a protocol, FLUTE is built on top of the Asynchronous Layered Coding (ALC) protocol instantiation [2] of the Layered Coding Transport (LCT) building block [3] (see Figure 1). FLUTE is carried over UDP/IP, and is independent of the IP version and the underlying link layers used.

[image: image1.wmf]FLUTE

ALC

LCT

FEC

CC

Figure 1 - Block structure of FLUTE

LCT is an abstract building block that provides a framework for defining an actual protocol. It has several specified and under-specified fields that are inherited and further specified by a protocol.

ALC is a protocol instantiation of LCT. ALC is under-specified and generally transports binary objects of finite or indeterminate length. FLUTE is a fully-specified protocol and specifically transports files (any kind of discrete binary object), and uses a specially purpose object – the File Description Table (FDT) – to provide a running index of files and their essential reception parameters in-band of a FLUTE session.

2 Transport of MBMS Download Data

This section explains briefly how files are constructed for and transported during a FLUTE session.

The sender (for example an MBMS BM-SC server) takes a file, e.g. a video clip or a still image, which is used as the transport object for FLUTE (see Figure 2). One FLUTE encoding symbol is carried as the payload of a each FLUTE packet, thus the FLUTE packet size is determined by the encoding symbol length. Both the encoding symbols length and the maximum allowed source block length are configured by the server. Based on the transport object length, the encoding symbol length and the maximum source block length, FLUTE calculates the source block structure (i.e., the number of source blocks and their length).

[image: image2.wmf]Constructing FLUTE Packets

=

1011010100

1010101101

1010101010

0100100101

0000000000

1111111111

0110010110

1100101011

1011010100

1010101101

1010101010

0100100101

0000000000

1111111111

0110010110

1100101011

file

transport

object

source

block(s)

00000

00000

encoding

symbol(s)

11111

11111

Header

FLUTE packet

11111

FLUTE/

UDP/

IP

packet

Figure 2
The server communicates the transport object length, the encoding symbol length and the maximum source block length to the receiver(s) within the FLUTE transmission. Thus the receiver can also calculate the source block structure in advance of receiving a file.

Encoding Symbols are the FLUTE packet payloads. They are taken from the source blocks in fragments according to the encoding symbol length (the figure shows 4 fragments). Then the FLUTE packet is constructed from FLUTE header and encoding symbol payload.

Example:

If we have

· a 3gp file of 1000000 bytes to transmit via FLUTE

· each FLUTE encoding symbol length = 500 bytes (only packet payload)

· the maximum allowed source block length = 100 encoding symbols

This will generate 20 source blocks each long 50000 bytes (100 symbols). Both the sender and receivers are aware of the fragmentation scheme used by FLUTE.

3 FLUTE usage for MBMS download

3.1 General

The term ”file” is used here for all objects carried by FLUTE (with the exception of the FDT Instances). This includes file content items provided by MBMS Download and service descriptions provided by MBMS Service Announcement.

The FLUTE specification shall be adhered to, as well those ALC [2] and LCT [3] requirements and features that it inherits. All mandatory aspects of FLUTE shall be mandatory for MBMS Download and Service Announcement delivery.

The following sections describe which optional and extended aspects of FLUTE are additionally mandatory to include or exclude for MBMS.

3.2 Fragmentation of Files

Fragmentation of files shall be provided by a blocking algorithm (which calculates source blocks from source files) and a symbol encoding algorithm (which calculates encoding symbols from source blocks).

Exactly one encoding symbol shall be carried in the payload of one FLUTE packet. FLUTE packet payloads should be at most 500 bytes in length.

3.3 Symbol Encoding Algorithm

FLUTE shall use the “Compact No-Code FEC scheme” [6] (FEC Encoding ID 0, also known as “Null-FEC”) as its Symbol Encoding Algorithm. No other symbol encoding scheme shall be used for Release 6 MBMS.

3.4 Blocking Algorithm

FLUTE shall use the ”Algorithm for Computing Source Block Structure” (described within the FLUTE specification [5]) as its Blocking Algorithm.

3.5 Congestion Control

Single channel single rate transport shall be used. No other channelisation or congestion control building block shall be used for FLUTE sessions in MBMS Release 6. As this case is extremely simple it does not require further specification. This is in conformance with the relevant IETF specifications [2, 3, 4] as MBMS data rates and congestion control are controlled within the MBMS system scope and routing of MBMS user service data (IP packets) is outside the scope of the MBMS specifications.

3.6 Signalling of Parameters with Basic ALC/FLUTE Headers

ALC and FLUTE mandatory header fields shall be as specified in [1, 2] with the following additional specializations:

· The length of the CCI (Congestion Control Identifier) field is 32 bits and it is assigned a value of zero (C=0).

· The Transmission Session Identifier (TSI) field is of length 16 bits (S=0, H=1, 16 bits).

· The Transport Object Identifier (TOI) field is of length 16 bits (O=0, H=1).

· The Expected Residual Time (ERT) field shall not be used and therefore the R flag shall be set to 0 (zero).

· The following features may be used for signaling the end of session and end of object transmission to the receiver:


The Close Session flag (A) for indicating the end of a session to the receiver.

· The Close Object flag (B) for indicating the end of an object to the receiver.
· Note: The T flag is to indicate the use of the optional “Sender Current Time (SCT)” field (when T=1).

· Note: The LCT header length (HDR_LEN) is set to the total length of the LCT header in units of 32-bit words.

· Note: FEC Payload ID is set according to [6] for null-fec such that a 32 bit SBN (Source Block Number) and then the 32 bit ESI (Encoding Symbol ID) are given.

3.7 Signalling of Parameters with FLUTE Extension Headers

· Only Transport Object Identifier (TOI) 0 (zero) shall be used for FDT Instances.

· EXT_FTI shall be included in every FLUTE packet carrying symbols belonging to any FDT Instance.

· FLUTE packets carrying symbols of files (not FDT Instances) shall not include an EXT_FTI.

· FDT Instances shall not be content encoded and therefore EXT_CENC shall not be used.

· Note: EXT_FDT is in every FLUTE packet carrying symbols belonging to any FDT Instance (FLUTE requires this).

· Note: FLUTE packets carrying symbols of files (not FDT instances) do not include the EXT_FDT (FLUTE requires this).

3.8 Signalling of Parameters with FDT Instances

The FLUTE FDT Instance schema [1] shall be used. In addition, the following applies to both the session level information and all files of a FLUTE session.

The inclusion of these FDT Instance data elements is mandatory according to the FLUTE specification:

· Content-Location (URI of a file)

· TOI (Transport Object Identifier of a file instance).

· Expires (expiry data for the FDT Instance). This is in the future (relative to the SCT) and set when an FDT Instance is created.

Additionally, the inclusion of these FDT Instance data elements shall be mandatory for FLUTE in MBMS:

· Content-Length (source file length in bytes)

· Content-Type (content MIME type)

· FEC-OTI-Maximum-Source-Block-Length

· FEC-OTI-Encoding-Symbol-Length

· FEC-OTI-Max-Number-of-Encoding-Symbols.

Note: FLUTE [1] describes which part or parts of an FDT Instance may be used to provide these data elements.

Note: These FDT Instance data elements may not be included for FLUTE in MBMS:

· Complete (the signalling that an FDT Instance provides a complete, and subsequently unmodifiable, set of file parameters for a FLUTE session may or may not be performed according to this method).

· FEC-OTI-FEC-Instance-ID (redundant as it is always equal to 0, null-fec).

The values for each of the above data elements are calculated or discovered by the FLUTE server.

3.9 Packet Header Descriptions (Informative)

This section illustrates the FLUTE packet header construction for the two cases: FLUTE packets with file data payload and FDT Instance data payload. It is assumed that SCT is used. This section is informative as all the information is derivable from the FLUTE specification [1] and the normative parts of this document.

Figure 3 shows a LCT/ALC/FLUTE packet header for a FLUTE packet with file data as the payload. The total length of the header is 12 bytes.

| ... |

| UDP header, etc |

+-+

|Version| C |res|S| O |H|T|R|A|B| Header length | Codepoint |

| = 1 |= 0|= 0|0|= 0|1|x|0|x|x| = 3 | = 0 |

+-+

| CCI = 0 |

| |

+-+

| TSI | TOI |

| (variable value) | (variable value) |

+-+

| Encoding Symbol |

| ... |

Figure 3. FLUTE Header for Packets with File Data Payload
Figure 4 shows a LCT/ALC/FLUTE packet header for a FLUTE packet with FDT Instance data as the payload. This adds the EXT_FTI and EXT_FDT header extensions to the header of figure 3. The total length of the header is 32 bytes.

| ... |

| UDP header, etc |

+-+

|ALC Ver| C |res|S| O |H|T|R|A|B| Header length | Codepoint |

| = 1 |= 0|= 0|0|= 0|1|x|0|x|x| = 8 | = 0 |

+-+

| CCI = 0 |

| |

+-+

| TSI | TOI |

| (variable value) | (variable value) |

+-+

| HET = 64 | HEL = 4 | |

| | | |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Transfer Length |

| (variable value) |

| |

+-+

| FEC Instance ID | Encoding Symbol Length |

| = 0 | (variable value) |

+-+

| Maximum Source Block length |

| (variable value) |

+-+

| Type |FDT Ver| FDT Instance ID |

| = 192 | = 1 | (variable value) |

+-+

| Encoding Symbol |

| ... |

Figure 4. FLUTE Header for Packets with FDT Instance Data Payload

4 Conclusions

It is proposed to include the text described in section 3, regarding the usage of FLUTE for MBMS Release 6, in the TS 26.346.

5 References

[1] FLUTE – File Delivery over Unidirectional Transport, IETF Internet Draft, Work in progress, http://www.ietf.org/internet-drafts/draft-ietf-rmt-flute-07.txt.

[2] Asynchronous Layer Coding (ALC) Protocol Instantiation, IETF RFC 3450.

[3] Layered Coding Transport (LCT) Building Block, IETF RFC 3451.

[4] Criteria for Evaluating Reliable Multicast Transport and Application Protocols, IETF RFC 2357.

[5] Forward Error Correction (FEC) Building Block, IETF RFC 3452.

[6] Compact Forward Error Correction (FEC) Schemes, IETF RFC 3695.

[7] FLUTE for MBMS downloading, Nokia, NTT DoCoMo, 3GPP TSG-SA4#29 meeting, 24-28 November 2003, Tampere, Finland, Tdoc S4-030772.

� Contact:

Igor D.D. Curcio, Rod Walsh – Nokia Corporation, Tampere, Finland – Tel. +358 71 800 8000 – Email: {igor.curcio, rod.walsh}@nokia.com

_1130678049.vsd

_1130670536.vsd

