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1. Introduction
A companion contribution proposed a “Universal Decoder” approach to forward error correction for MBMS.
This contribution proposes a concrete implementation of this approach.

2.
Construction and decoding of codes using XOR operations
This implementation is based on the observation that a very large class of forward error correction codes work by constructing parity or check symbols which are the “exclusive or” of some selection of the source symbols. A ‘symbol’ here refers to a fixed length data block, for example a packet (although sometimes there may be multiple symbols in a packet). Such symbols can be of any length. Examples of such codes are:

· Reed-Solomon codes based on Cauchy [10] or Vandermond [11] matrices
· Low Density Parity Check codes applied to erasure protection [1], [2], [3], [5], [6]
· Tornado Codes [7]

· Rateless codes such as LT Codes [8] and Raptor Codes [9]

(It should be noted that LDPC codes represent a very large class in themselves, stretching from the original random regular codes developed in the 1960’s to more advanced irregular codes, including Tornado codes. Different LDPC codes may have very different properties).

In all such codes the decoder is essentially presented with a series of simultaneous equations which relate the received source and parity symbols to the missing source symbols. The decoding operation consists of solving those simultaneous equations to find the missing symbols. This, once the receiver knows these equations, the decoding can be done using standard techniques for solving equations (specifically back-substitution of received or decoded symbols and Gaussian elimination).
3.
Design of efficient codes
The design of efficient erasure codes consists primarily in the algorithm which choose which source symbols will be combined to form each parity symbol. The choice of algorithm affects:

· Computational complexity of decoding

· Memory requirements for decoding (both overall and ‘instantaneous’)

· Reception overhead

These factors in turn determine the viability of the code, especially as the number of symbols grows. In particular, the computational complexity of decoding can be minimised if :

(i) the equations are ‘sparse’ – i.e. the average number of symbols in each equation stays low as file size grows

(ii) the decoding can be completed entirely through back-substitution  (i.e. without resorting to Gaussian Elimination)
In practice greatest decoding efficiency can be achieved if a Gaussian Elimination step is included at the end of decoding, when just a few equations remain, to recover the last few symbols.

Such an algorithm will efficiently decode any of the above-mentioned Forward Error Correction codes (at least in terms of reception overhead and success probability).

So, it can be seen that it is the algorithm for the construction of a code, rather than for decoding it, which determines its properties. In the case of patented codes, it is the construction of the code which contains the novelty (although see below about decoder optimisations).

4.
Universal decoder

The above discussion motivates the design of a universal decoder in which the algorithm for specifying the construction of the code – that is for deriving the simultaneous equations that relate the source and parity symbols - is provided at run-time (as part of the data stream). This algorithm is executed by the decoder in order to determine the set of simultaneous equations.

The construction of the code can more easily be represented by a matrix with binary entries. Each column of the matrix corresponds to a source or parity symbols and each row to a relationship between them (aka equation or constraint). Specifically, for each row, the exclusive OR of the symbols whose columns have a ‘1’ in that row is zero. An example of such a matrix representation of the equations is shown below:
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In this example, the first matrix row represents the equation:

d5 ( d6 ( d10 ( p4 ( p5 = 0

Where ( is the exclusive or operation. In particular, if any four of d5, d6,  d10, p4 and p5 are known, then the fifth can be calculated.

Making the algorithm for generating the matrix downloadable is achieved by designing a simple virtual machine optimised for this particular task. This is a similar approach to that taken by the IETF SIP group in their signalling compression work [3].

This virtual machine has one simple task –  running a program that generates the matrix for the code in question. It can be optimised for this. It does not need to be provided with much memory and the executed algorithm will not need to manage complex data structures etc. The bytecode in which the algorithm is expressed (consisting of instructions for the virtual machine) can be very simple.

Generating the matrix for the code is not the most computationally intensive part of the decoding process – in fact in general the amount of computation required is negligible. The inefficiency of executing this part of the decoding in a virtual machine is therefore not a problem.

5.
Downloading the Matrix Generator bytecode
Our simple proof-of-concept virtual machine language was able to express a simple random regular LDPC code in just 60 bytes of instructions with a further 30 bytes of working memory required. More complex codes might require a few hundred bytes of instructions.

Even if the bytecode grows to a more significant size, it only needs to be downloaded once to each terminal. We would expect terminals to store the bytecode they have received associated with different FEC Encoding IDs (as used in FLUTE). An HTTP URL could be provided as part of the FLUTE File Delivery Table which would point to the bytecode which could be retrieved by those UEs which did not already have it. Alternatively the bytecode could be included as an object in the FLUTE session itself. 
6.
Decoder optimisations
As noted above, once the matrix is known it can be solved by standard techniques. In particular we can apply back-substitution of received and decoded symbols into the equations, followed by a Gaussian Elimination step once there is nothing left to back-substitute.
In addition, there are many further optimisations which can be applied to the equation solving operation, without changing the actual protocols. For example it is well-known that Gaussian elimination applied to sparse matrices is more efficient if the pivot point is chosen to be at the lowest weight column of the lowest weight row (this reduces ‘in-fill’ of the matrix).

Other optimisations can be implemented without needing prior knowledge of the construction of the matrix. However they are not strictly necessary to implement the universal decoder and so could be left as implementation decisions (i.e. they need not be standardised, since their use does not affect the ‘bits-on-the-air’.). Alternatively, certain optimisations could be recommended or mandated in the standard in order to ensure computational viability in practice for a wide variety of codes.
7.
Conclusion
We outline an implementation of a ‘Universal Decoder’ approach for forwards error correction for MBMS. This consists of a ‘matrix generator virtual machine’ combined with standard techniques for solving simultaneous equations.

Different FEC codes can be expressed in terms of programs for this virtual machine which, when executed, provide the decoder with a parity matrix which characterises the FEC code.

We note that:

· The matrix generation is not a computationally intensive task, and so execution within a virtual machine is not an issue

· The virtual machine language can be designed specifically for the task at hand (cf SIGCOMP [3]) and can be made very simple so that it can be coded by hand (i.e. no need for compilers etc.)
· As a result, the downloaded program code will likely be of the order of a few hundred bytes

· Another consequence of such a design is that the usual security implications of a virtual machine are eliminated

· Further optimisations of the decoder can be left as implementation issues

We have developed a detailed description of a suitable virtual machine and implemented a proof-of-concept simulator of the decoder, which has been used to generate simulation results.
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