TSG System Aspects WG#4
S4-AHP105
Meeting #, Lund, Sweden, 5-7 April 2004

Source:
Nortel Networks

Title:
XOR-based Reed-Solomon codes
Document for:
Information
Agenda Item:
MBMS – 4.1.1.3

1. Introduction
At the last SA4 meeting there was some doubt as to whether Reed-Solomon codes could be constructed such that parity data was constructed using exclusive OR operations, rather than finite field operations.

This approach is more efficient since Exclusive OR operations are provided as basic microprocessor instructions, wheras finite field operations are not.

This paper provides a brief description of the approach. For further details see [1] or [2].

2.
Finite Fields

XOR-based Reed-Solomon codes still rely on finite fields. However, the finite field operations are used to determine how to construct the code – i.e. which source symbols to exclusive OR with which other source symbols to form a parity symbol. The construction of the parity symbols is then carried out by XOR operations.

A field is a set upon which the usual arithmetic operations of addition, subtraction, multiplication and division can be applied. Ordinary real numbers form a field. A finite field has only a finite number of elements. Finite fields are usually denoted GF(q), where q is the number of elements. GF stands for Galois Field after Evarist Galois.

Finite fields exist for all values of q which are the power of a prime. For Reed-Solomon codes we are concerned with values which are powers of 2. For simplicity we now consider only GF(28), the field with 256 elements.

There are various ways to represent elements of a finite field. For GF(256) is it possible to associate each element with an 8x1 column vector with binary entries. It is also possible to associate each element with an 8 x 8 binary matrix in such a way that:

(matrix representation of a) x (matrix representation of b) = (matrix representation of a x b)

and

(matrix representation of a) x (vector representation of b) = (vector representation of a x b)

Also, matrix and vector addition correspond to field addition in a similar way. Here, the addition of binary digits is an XOR operation and multiplication is an AND operation.

3.
Construction of XOR Reed-Solomon codes

We want to construct an (N,K) Reed-Solomon erasure code which will generate N-K packets of parity data from K packets of source data.

We first construct an (N-K) x K matrix of elements from GF(256) with the property that any square sub-matrix is invertible (Cauchy [1] and Vandermond [2] matrices have this property). This is possible if N is less than the size of the field, in this case N<256.
Next we convert this into a binary matrix by replacing each element by it’s 8 x 8 binary representation. This matrix will be 8(N-K) x 8K in size.
Finally, we break each packet of source data into 8 source symbols (it helps if the length of the packet is a multiple of 8) – note the difference between source packets and source symbols. We arrange these symbols into an 8K x 1 column vector (with the 8 symbols from the first packet first, followed by the 8 symbols from the second packet).

Now we can generate 8(N-K) parity symbols by multiplying the binary matrix by this column vector using XOR operations. So, the nth row of the matrix indicates which source symbols should be XORed together to produce the nth parity symbol. The parity symbols are packed in groups of 8 into parity packets.

In this way, each parity packet is generated from one row of the original (N-K)xK matrix with each source packet corresponding to a single column.

4.
Decoding XOR Reed-Solomon codes

The decoder constructs a copy of the matrix as described above. It considers the submatrix formed from the columns corresponding to the missing source packets and the rows corresponding to the received parity packets.
As long as there are at least as many received parity symbols as there are missing source symbols we can make this matrix square by discarding zero or more rows. This square matrix will be invertible (since we constructed the matrix this way). We need to invert the matrix and expand everything back to the binary representation (replacing field elements by 8x8 matrices and breaking packets into 8 symbols each). We now have an expression of each missing source symbol in terms of XORs of the received source and parity symbols and we can decode the code.

It is also possible to work entirely within the expanded binary representation of the matrix, in which case the decoding algorithm is just the same as would be used with any other XOR code.

5.
Efficiency

The above code is more efficient than traditional Reed-Solomon, in which the data to be protected is processed directly with finite field operations. Although the above algorithm is in a sense equivalent to this (consider the nth bit of each of the 8 symbols in a packet as forming a representation of a field element.).

However, the complexity of inverting an n x n matrix grows with n2.

For example, in our experiments we considered a 64k file contained in 128 packets of 512 bytes each. We applied a (192,128) code according to the construction above and then randomly discarded 64 of the source packets. To decode this worst case required about 250 symbol XOR operations per symbol (each symbol was 32 bytes and we operated on the binary representation of the matrix). The average workload was closer to 140.
By contrast an irregular LDPC code applied to the same symbols required only 10 XOR operations per symbol, although in return it required 131-133 received symbols to recover the 128 source symbols compared to 128 for RS (a receive overhead of 2.3%-3.9% - more than 131 packets were needed about 15% of the time.).

Of course, if more source symbols are received, the size of the matrix to be inverted is decreased and the decoding requires less work.

6.
Conclusion

This paper provides a summary description of a technique for applying Reed-Solomon codes to erasure protection by means of exclusive OR operations.

XOR operations are more efficient than directly applying finite field operations to the source data, since microprocessor instructions exist for exclusive OR but not for finite field operations.

Neverthess, Reed-Solomon encoding is computationally expensive as the block size grows due to the need to perform an inversion of a dense matrix. Sparse matrix techniques such a LDPC can result in much faster execution times, especially when a significant amount of data has been lost.
References

[1]
 “An XOR-Based Erasure-Resilient Coding Scheme”, Johannes Blömer, Malik Kalfane, Richard Karp, Marek Karpinski, Michael Luby and David Zuckerman (http://www.icsi.berkeley.edu/~luby/PAPERS/cauchypap.ps.)

[2] “Effective erasure codes for reliable computer communication protocols”, Luigi Rizzo, ACM Computer Communication Review, April 1997.

1
1

