Tdoc S4-AHP007 Appendix C
Advanced Systems Format Specification

Microsoft Corporation
This submission is made pursuant to the Third Generation Partnership Project Agreement. Microsoft Europe SARL, as a member of ETSI, makes this submission in accordance with ETSI's IPR policy. Any intellectual property in this submission is the property of Microsoft Corporation ("Microsoft"), the parent of Microsoft Europe SARL. Microsoft hereby grants to 3GPP and ETSI a perpetual, nonexclusive, non-sublicensable, non assignable, royalty-free, world-wide right and license under any Microsoft copyrights in this contribution to copy, publish and distribute the contribution, as well as a right and license of the same scope to any derivative works prepared by 3GPP and ETSI and based on, or incorporating all or part of the contribution.

This contribution and the information contained herein is provided on an "AS IS" basis and to the maximum extent permitted by applicable law, Microsoft provides the contribution AS IS AND WITH ALL FAULTS, and hereby disclaims all other warranties and conditions, either express, implied or statutory, including, but not limited to, any (if any) implied warranties, duties or conditions of merchantability, of fitness for a particular purpose, of accuracy or completeness of responses, of results, of workmanlike effort, of lack of viruses, and of lack of negligence, all with regard to the contribution. ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH REGARD TO THE CONTRIBUTION.

IN NO EVENT WILL MICROSOFT BE LIABLE TO ANY OTHER PARTY INCLUDING 3GPP AND/OR ETSI AND ITS MEMBERS FOR THE COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY WAY OUT OF THIS OR ANY OTHER AGREEMENT RELATING TO THIS DOCUMENT, WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

Advanced Systems Format Specification

1Tdoc S4-AHP007 Appendix C

21

32
Introduction

33
Technical Descriptions

33.1
Data Types

43.2
ASF Header Section

53.2.1
header_object (ASF signature object)

53.2.1.1
Header object structure

53.2.1.2
Header object data elements

53.2.2
properties_object

53.2.2.1
Properties object structure

53.2.2.2
Properties object data elements

63.2.3
stream_properties_object

73.2.3.1
Stream properties object structure

73.2.3.2
Stream properties object data elements

73.2.3.3
Stream Properties Object (Audio)

73.2.3.3.1
stream_type guid (audio)

83.2.3.3.2
type-specific data (audio)

83.2.3.4
Stream Properties Object (Video)

83.2.3.4.1
stream_type guid (video)

83.2.3.4.2
type-specific data (video)

93.2.4
content_description_object

93.2.4.1
Content description object structure

93.2.4.2
Content description object data elements

103.2.5
marker_object

103.2.5.1
Marker object structure

113.2.5.2
Marker object data elements

113.2.6
padding_object

113.2.6.1
Padding object structure

113.2.6.2
Padding object data elements

123.3
ASF Data Section

123.3.1
data_section_introduction_object

123.3.2
interleave_packet

123.3.2.1
Packet and payload parsing reference code

183.3.3
ASF Index Section

184
Appendix A. Glossary

Advanced Systems Format Specification
1 Introduction

The ASF (Advanced Systems Format) File Format is a general purpose multimedia file format designed to store arbitrary multimedia streams and meta-data. ASF was designed for use in networked environments (wireless and wired).

The ASF file format is designed to be codec neutral, and may be used to hold media data compressed with any audio or video codec, both present and future. The codec is identified by an integer field in the “stream properties object” in the ASF header section. There is a registration procedure for new codecs.

The ASF file format supports arbitrary media types. In addition to audio and video, it may be used to encapsulate non-image information, such as URLs and HTML pages, and to synchronize this information with audio and video. New stream types are defined using universally unique identifiers (UUIDs).
ASF is designed to be application neutral, protocol neutral, and transport neutral. ASF may be used for playback from locally accessible storage, progressive download playback from a web server, or streaming playback from a specialized media server.
A partially downloaded ASF file is perfectly functional. It is possible to seek to any position (backwards and forwards) within a partially downloaded file. Seeking in an ASF file does not require the use of an index object.
2 Technical Descriptions

An ASF multimedia stream consists of multiple logical sections:

Header Section (Required) -- Describes the ASF file as a whole, including global information about the content contained in the stream and media stream definition information.

Data Section (Required) -- The actual data contents of the multimedia file in the form of a linearized stream of packets.

Index Section (Optional) -- Contains index entries to packets in the Data Section for fast lookup and search. The index section is not required for seeking operations.

Diagram

--ASF file

 |

 |--header_section(Required)

 |

 |--data_section (Required)

 |

 |--index_section (Optional)

The header_section must be the first section, followed by the data_section, followed (optionally) by the index section.

2.1 Data Types

The following data types are used in this document. (Other data types are defined as needed in terms of these fundamental types.)

BYTE

 8 bits

WORD

 16 bits

WCHAR

 16 bits

DWORD
 32 bits

QWORD

 64 bits

GUID

128 bits

All multi-byte values in an ASF are stored little-endian (byte 0 is low-order byte) and byte-aligned.

2.2 ASF Header Section

The first section of the ASF file is called the header section. To be valid, the header section must contain a header_object, a properties_object and at least one stream_properties_object.

The header_object must be the first object that appears in the header section. (The header object is also referred to as the ASF file signature object). This object includes the UUID that identifies this as an ASF file. It also defines the number of other objects in the header section and the size of the entire header section.

The properties_object contains the properties which apply to the ASF data section as a whole, such the playback duration, the packet size, and the number of packets.
The stream_properties_object defines properties associated with a particular stream. There must be a separate stream_properties_object for each stream present. This object includes such information as the UUID defining the stream, and information about the codec settings (for audio and video streams).

In addition to these required objects, the header section may include optional objects, as shown in the following table:

Header Section Object
Req/Opt
Description

__

header_object

Required
Contains the size and number of objects in the entire header section.

properties_object
Required
Describes the properties the apply to the ASF file as a whole.

stream_properties_object
Required
Defines properties associated with a particular stream.

content_description_object Optional
Describes, in Unicode, the author, title, copyright, etc.

marker_object
Optional
Allows an arbitrary list of specific points on the playback timeline such as identifying the beginning of a scene.

Each object in the header section is identified by a UUID. This allows for future expansion. Additional header section objects may be defined as needed, with their own new UUIDs. Because each object starts with a UUID and a size value, media viewers that do not recognize these UUIDs must use the size value to determine the start of the next object, skip the unknown object, and examine the next object in the header.

In most objects, a size value defines the size of that individual object. However, the header_object size value describes the size of the entire header section.

The ASF signature object (header_object) must be the first object in the header section. Other objects within the header section may appear in arbitrary order.

The format of each of the header section objects is defined in the following sections.
2.2.1 header_object (ASF signature object)
The header_object (also called ASF signature object) identifies the beginning of the ASF header section and the number of other objects contained in the header section.

2.2.1.1 Header object structure

typedef struct _header_object

{

GUID guid;

QWORD size;

DWORD number_headers;

WORD reserved;

} header_object;

2.2.1.2 Header object data elements

guid
Contains the UUID for this object. The header_object UUID is {0x75b22630,0x668e,0x11cf,0xa6,0xd9,0x00,0xaa,0x00,0x62,0xce,0x6c}.

size
A 64-bit quantity describing the size of the entire ASF header section in bytes. Note that this value varies with the number and sizes of the enclosed objects.

number_headers

A 32-bit number that is a count of the objects contained within the header section that follow this header_object.

2.2.2 properties_object

The properties_object describes various data section properties, such as the duration of the multimedia stream, and the packet size.

2.2.2.1 Properties object structure

typedef struct _properties_object

{

GUID guid;

QWORD size;

GUID multimedia_stream_id;

QWORD total_size;

QWORD created;

QWORD num_interleave_packets;

QWORD play_duration;

QWORD reserved;

QWORD preroll;

DWORD flags;

DWORD min_interleave_packet_size;

DWORD max_interleave_packet_size;
// shall always be equal to min_interleave_packet_size

DWORD maximum_bit_rate;

} properties_object;
2.2.2.2 Properties object data elements

guid
Contains the UUID for this object. The properties_object UUID is

{0x8cabdca1, 0xa947, 0x11cf, 0x8e, 0xe4, 0x0, 0xc0, 0xc, 0x20, 0x53, 0x65 }.

size
A 64-bit quantity describing the size of this object in bytes.

multimedia_stream_id

Uniquely identifies this multimedia stream.

total_size

A 64-bit quantity expressing the size, in bytes, of the entire multimedia stream. This data element is not necessarily valid when the flags broadcast bit (bit 0) is set to 1.

created

A 64-bit filetime indicating when the multimedia stream was created. This data element is not necessarily valid when the flags broadcast bit (bit 0) is set to 1.

num_interleave_packets

A 64-bit quantity defining the number of interleave packets present in the data section. This data element is undefined when the flags broadcast bit (bit 0) is set to 1.

play_duration

A 64-bit number corresponding to the time needed to play the multimedia stream in 100 nanosecond units. This data element is not valid when the flags broadcast bit (bit 0 of the ‘flags’ element) is set to 1. (Note, see preroll below.)

preroll

A 64-bit number in milliseconds.

If the preroll is non-zero, it means that that the stream properties play_duration field (above) and all of the payload PresentationTime fields (below) have all been offset by this amount. Therefore, the player must subtract the value in the preroll field from the play duration and all presentation times to calculate their actual values.

flags
A 32-bit quantity representing various bit-level flags.

Bit 0: broadcasting. A control flag stating whether or not the stream is being broadcast. The values of the total_size, created, duration and num_interleave_packets data elements are not valid if this bit is set.

Bit 1: if set, then index section is present

All other bits are reserved.

min_interleave_packet_size

A 32-bit quantity expressing the size, in bytes, of the interleave_packet in the data section of the multimedia stream. Must equal max_interleave_packet_size. All ASF packets within one ASF file are equal size.

max_interleave_packet_size

A 32-bit quantity expressing the size, in bytes, of the interleave_packet in the data section of the multimedia stream. Must equal min_interleave_packet_size. ASF ASF packets within one ASF file are equal siez.

maximum_bit_rate

This 32-bit quantity contains the maximum instantaneous bit rate, in bits per second, of the multimedia stream. This must equal the sum of the bitrates of the individual media streams.

2.2.3 stream_properties_object

The stream_properties_object describes generic media stream properties and other information that will be needed by multiple samples, such as default palettes for bitmaps or compression headers for codecs.

There must be a stream_properties_object associated with every media stream type contained in the ASF multimedia stream.

2.2.3.1 Stream properties object structure

typedef struct _stream_properties_object
{

GUID guid;

QWORD size;

UUID stream_type;

UUID reserved;

QWORD offset;

DWORD type_specific_len;

DWORD reserved;

WORD stream_number;

DWORD reserved;
BYTE type_specific_data[type_specific_len];

} stream_properties_object;

2.2.3.2 Stream properties object data elements

gujd
 Contains the UUID for this object. The stream_properties_object UUID is

{ 0xb7dc0791, 0xa9b7, 0x11cf, 0x8e, 0xe6, 0x0, 0xc0, 0xc, 0x20, 0x53, 0x65 }

size
 A 64-bit quantity describing the size of this object in bytes.

stream_type

 Contains the unique identifier that defines the media type of the stream. (See the Stream Properties Object (Audio) and Stream Properties Object (Video) sub-sections below for details.)

type_specific_len
A 32-bit unsigned integer describing the number of bytes in the following type-specific data block.

stream_number
A 16-bit value that is used in interleave_packets as an alias to the stream properties object to conserve space while identifying the stream uniquely.

offset
This value shall be equal to the send time of the first interleaved packet in the data section. Usually zero. Non-zero in the case where an ASF file is edited and it is not possible for the editor to change the presentation times and send times of ASF packets. (Note, if there is more than one stream present in an ASF file, then the offset values of all stream properties objects must be equal.)

type_specific_data[]

A stream type has certain properties associated with it, defined by the stream type UUID. (See the Stream Properties Object (Audio) and Stream Properties Object (Video) sub-sections below for details.)

2.2.3.3 Stream Properties Object (Audio)

This section defines the guid and type-specific data for audio streams.

2.2.3.3.1 stream_type guid (audio)

Audio streams are identified by the following guid in the stream_type field of the stream_properties object.

{ 0xf8699e40,0x5b4d,0x11cf,0xa8,0xfd,0x00,0x80,0x5f,0x5c,0x44,0x2b }

2.2.3.3.2 type-specific data (audio)

The type-specific data for each audio stream always begins with the WAVEFORMATEX structure as shown here. The application may determine the type of compression used by examining the wFormatTag of the WAVEFORMATEX structure.

 audio stream, the type-specific data The type specific data is shown in the structure ASF_AUDIO_TYPE_SPECIFIC_DATA below.

typedef struct tWAVEFORMATEX

{

// The wFormatTag identifies what codec was used to compress

// this audio stream.

// The following wFormatTag values are defined:

//
0x0161 Windows Media Audio

//
0x7A21 GSM-AMR (fixed bitrate, no SID)

// 0x7A22 GSM-AMR (variable bitrate, including SID)

 WORD wFormatTag;

 WORD nChannels; /* number of channels (i.e. mono, stereo...) */

 DWORD nSamplesPerSec; /* sample rate */

 DWORD nAvgBytesPerSec; /* for buffer estimation */

 WORD nBlockAlign; /* block size of data */

 WORD wBitsPerSample; /* number of bits per sample of mono data */

 WORD cbSize; /* the count in bytes of the size of */

 /* extra information (after cbSize) */

} WAVEFORMATEX, *PWAVEFORMATEX, NEAR *NPWAVEFORMATEX, FAR *LPWAVEFORMATEX;

2.2.3.4 Stream Properties Object (Video)

This section defines the guid and type-specific data for video streams.

2.2.3.4.1 stream_type guid (video)

Video streams are identified by the following guid in the stream_type field of the stream_properties object.

{ 0xbc19efc0, 0x5b4d, 0x11cf, 0xa8, 0xfd,0x00,0x80,0x5f,0x5c,0x44,0x2b }

2.2.3.4.2 type-specific data (video)

The type specific data is shown in the structure ASF_VIDEO_TYPE_SPECIFIC_DATA below.

typedef struct tagBITMAPINFOHEADER{

 DWORD biSize;

 LONG biWidth;

 LONG biHeight;

 WORD biPlanes;

 WORD biBitCount;

// The biCompression field contains 4 characters identifying

// the type of compression that was used.

//

// For ISO-MPEG-4 video, this contains “MP4S”, “mp4s”, “M4S2”, or “m4s2”

//

 DWORD biCompression;

 DWORD biSizeImage;

 LONG biXPelsPerMeter;

 LONG biYPelsPerMeter;

 DWORD biClrUsed;

 DWORD biClrImportant;

} BITMAPINFOHEADER;

typedef PACKED struct _ASF_VIDEO_TYPE_SPECIFIC_DATA

{

 DWORD windowWidth;

 DWORD windowHeight;

 BYTE reserved;

 WORD imageInfoLen;

 BITMAPINFOHEADER bmi;

} ASF_VIDEO_TYPE_SPECIFIC_DATA;

2.2.4 content_description_object

The ASF content_description_object permits content authors to include information such as a title, copyright, author name, rating, and other description information in an ASF multimedia stream.

2.2.4.1 Content description object structure

typedef struct _content_description_object

{

GUID guid;

QWORD size;

WORD title_len;

WORD author_len;

WORD copyright_len;

WORD description_len;

WORD rating_len;

WCHAR title[title_len/2];
WCHAR author[author_len/2];

WCHAR copyright[copyright_len/2];
WCHAR description[description_len/2];
WCHAR rating[rating_len/2];
} content_description_object;

2.2.4.2 Content description object data elements

guid
Contains the UUID for this object. The content_description_object UUID is

{ 0x75b22633,0x668e,0x11cf,0xa6,0xd9,0x00,0xaa,0x00,0x62,0xce,0x6c }.

size
A 64-bit quantity describing the size of this object in bytes.

title_len

A 16-bit quantity indicating the number of bytes that follow and compose the title of the multimedia stream.

author_len

A 16-bit quantity indicating the number of bytes that follow and represent the author of the multimedia stream.

copyright_len

A 16-bit quantity indicating the number of bytes that follow and compose the copyright statement of the multimedia stream.

description_len

A 16-bit quantity indicating the number of bytes that follow and compose the description of the multimedia stream.

rating_len

A 16-bit quantity indicating the number of bytes that follow and compose the rating for the multimedia stream.

title[]

An array of Unicode characters that contain the title of the multimedia stream.

author[]

 An array of Unicode characters that contain the name of the multimedia stream author.

copyright[]

An array of Unicode characters that contain the copyright statement of the multimedia stream.

description[]

An array of Unicode characters that contain the description of the multimedia stream.

rating[]

An array of Unicode characters that contain rating information for the multimedia stream. This string is not used.
2.2.5 marker_object

The marker_object defines a set of points on the playback timeline each tagged with a logical name. A marker may, for instance, identify the beginning of a chapter in an audio book or the beginning of a scene in a movie.

2.2.5.1 Marker object structure

typedef struct _marker_object

{

UUID guid;

QWORD size;

UUID reserved;

DWORD num_entries;

DWORD reserved;

for (i = 0; i < num_entries; i++)

{

QWORD offset;

QWORD time;

WORD reserved;

DWORD send_time;

DWORD reserved;

DWORD name_len;

name[name_len/2];

}

} marker_object;

2.2.5.2 Marker object data elements

guid
Contains the UUID for this object. The marker_object UUID is:

{ 0xf487cd01, 0xa951, 0x11cf, 0x8e, 0xe6, 0x0, 0xc0, 0xc0, 0x20, 0x53, 0x65 }.

size
A 64-bit quantity describing the size of this object in bytes.

num_entries
Number of marker entries.

name_len
A 16-bit quantity indicating the number of Unicode characters that follow and compose the name.

Offset

Offset in bytes defines a relative distance from start of packets in the data section indicating the position of this marker entry.

time

Time of the marker entry (in milliseconds).

name

An array of Unicode characters that contain the name of the marker object.

2.2.6 padding_object

This is a dummy object that may be used if the encoder, for whatever reason, wishes to pad out the size of the header section. This GUID is provided mainly for convenience and encoders are free to create new header objects as needed as all unknown header objects will be ignored by decoders.

2.2.6.1 Padding object structure

padding_object

{

UUID guid;

QWORD size;

BYTE rgb[size – sizeof(GUID) – sizeof(QWORD)];

}

2.2.6.2 Padding object data elements

guid
Contains the UUID for this object. The padding_object UUID is:

// {1806D474-CADF-4509-A4BA-9AABCB96AAE8}

DEFINE_GUID(CLSID_AsfPadding,

0x1806d474, 0xcadf, 0x4509, 0xa4, 0xba, 0x9a, 0xab, 0xcb, 0x96, 0xaa, 0xe8);

size
A 64-bit quantity describing the size of this object in bytes.

rgb

array containing padding data, usually set to zero.

2.3 ASF Data Section

The data section of the ASF file contains the actual multimedia data. The data section consists of an unused 50 byte data_section_introduction_object object followed by a series of interleave_packet objects. Each interleave_packet object contains one or more payloads of data.
2.3.1 data_section_introduction_object
This object must be the first object in the data section. This object is unused. All ASF players shall require the presence of this object, but shall disregard the contents of this object.

Syntax

typedef struct _data_section_introduction_object

{

BYTE reserved[50];

} data_section_introduction_object;

Data Elements

None

2.3.2 interleave_packet

All packets in an ASF stream have fixed size. (See max_interleave_packet_size above.) Each packet contains one or more variable size payloads. Each payload has a stream number that corresponds to the stream_num field of one of the stream_properties objects in the ASF header section. The payload carries “data objects” for that stream.
A “data object” is a unit of data produced by a compression algorithm.
The interleave_packet objects may be parsed by an ASF player application to produce the fields described in the PACKET and PAYLOAD structures below. The function ASFParsePacket below shows how a player application must parse the interleave_packet object and produce these structures.
2.3.2.1 Packet and payload parsing reference code

// ParsePacket.c

//

// ASF Reference Source Code showing how to parse

// the interleave_packet object.

//

// Maximum number of payloads allowed in an ASF packet

#define MAX_PAYLOADS 64

// struct PAYLOAD

// ==============

//

// Contains the information parsed out of a payload.

//

typedef struct _PAYLOAD {

 // corresponds to the stream_id field in the stream properties object

 // in the ASF header section.

 unsigned char StreamNum;

 // time (in milliseconds) to render this data (e.g. time to

 // display the video frame or play the audio samples)

 unsigned int PresentationTime;

 // If this payload contains multiple data objects (see

 // fContainsMultipleDataObjects below) then this is the

 // time delta between each data object's presentation time.

 unsigned char PresentationTimeDelta;

 // All pieces of an object have the same ObjectId. A data object

 // will be divided into pieces if it is too big to fit into

 // a single payload. The ObjectId cycles from 0 to 255 and is

 // used by the player to reassemble the complete data object.

 unsigned char ObjectId;

 // The object offset is the number of bytes from the beginning

 // of a data object to the piece of the data object stored in

 // this payload. This is useful in the case where a large data object

 // has been split into pieces which fit inside payloads.

 unsigned int Offset;

 // This is the size of the entire data object (i.e. sum of all sections)

 unsigned int cbObjectSize;

 // Is this a keyframe? (video only)

 unsigned int fKeyFrame;

 // If true, then pData points to a buffer containing a series

 // of data objects, each preceded by a one-byte size field.

 //

 // If false, then pData points to a single data object.

 int fContainsMultipleDataObjects;

 // Size of this data object in bytes. (If the payload

 // contains multiple data objects, then this is the total

 // size of all the packed data objects together and includes

 // the one byte size fields that precede each data object.)

 unsigned int cbData;

 // Pointer to the beginning of this data object (or series of

 // packed data objects -- see flag fContainsMultipleDataObjects above).

 unsigned char *pData;

} PAYLOAD;

// struct PACKET

// =============

//

// Contains the information parsed out of a interleave_packet

// object in an ASF multimedia stream.

//

typedef struct _PACKET {

 // send time for this packet (ignored by the player unless it is receiving the stream from a Windows Media server)

 unsigned int SendTime;

 // count of payloads

 unsigned int cPayload;

 // array of payloads

 PAYLOAD rgPayload[MAX_PAYLOADS];

} PACKET;

// See full description below.

void ASFParsePacket(unsigned char *pInput, long cbPacketSize, PACKET *pPacket);

// private data

static unsigned char *g_pInput; // input buffer

static int g_iInput; // index into input buffer

static int g_fMultiplePayloads; // are there multiple payloads in this packet?

static int g_cbPacketSize; // size of this packet

static int g_cbPadding; // number of bytes of padding at the end of this packet

static int g_OffsetLenType; // type of the Offset field (0 = not present, 1 = 'byte', 2 = 'word', 3 = 'dword')

static int g_PaddingLenType; // type of the Padding Length field (0 = not present, 1 = 'byte', 2 = 'word', 3 = 'dword')

static int g_PayloadLenType; // type of the Payload Length field (0 = not present, 1 = 'byte', 2 = 'word', 3 = 'dword')

// types used in this file

typedef unsigned char BYTE;

typedef unsigned short WORD;

typedef unsigned long DWORD;

static void ParsePayload(PACKET *pPacket, PAYLOAD *pPayload);

BYTE GetByte()

{

 BYTE b;

 b = g_pInput[g_iInput];

 g_iInput++;

 return b;

}

WORD GetWord()

{

 WORD w = * ((WORD *) (g_pInput + g_iInput));

 g_iInput += 2;

 return w;

}

DWORD GetDword()

{

 DWORD dw = *((DWORD *) (g_pInput + g_iInput));

 g_iInput += 4;

 return dw;

}

DWORD GetVariableSizeField(int type)

{

 switch(type)

 {

 case 0x00:

 return 0;

 case 0x01:

 return (DWORD) GetByte();

 case 0x02:

 return (DWORD) GetWord();

 case 0x03:

 return (DWORD) GetDword();

 default:

 // This is an error.

 return 0;

 }

}

// This is the "clock_data" field which is present in all ASF packets.

// The "clock_data" field contains data representing time information. This data includes

// a "clock_license" that contains a system clock reference (in milliseconds) that drives

// the progression of time.

// This data also includes a "clock_duration" that specifies the effective validity

// of the clock license (in milliseconds).

typedef struct _clock_data {

 DWORD clock_license;

 WORD clock_duration;

} clock_data;

//

// ASFParsePacket

// ===========

//

// Purpose;

// This parses an 'interleave_packet' object in an ASF multi-media stream.

//

// Input:

// pInput = pointer to a buffer containing an ASF interleave_packet

// cbPacketSize = this is the size of the packets in this ASF stream

// (obtained by reading the min_interleave_packet_size32 field

// from the 'properties' object in the ASF header section).

//

// Output:

// pPacket = A filled-in PACKET structure containing all the fields that a player

// need to decode and render this packet. (See description of the

// PACKET structure above for more details.)

//

void ASFParsePacket(BYTE *pInput, long cbPacketSize, PACKET *pPacket)

{

 BYTE b;

 BYTE *pb, *pbMax;

 int Duration;

 unsigned int iPayload;

 // Set up our private state...

 g_pInput = pInput;

 g_iInput = 0;

 g_cbPacketSize = cbPacketSize;

 // zero initialize the packet structure...

 pb = (BYTE *) pPacket;

 pbMax = ((BYTE *) pPacket) + sizeof(PACKET);

 while (pb < pbMax) { *pb++ = 0; }

 // Read first byte...

 b = GetByte();

 // The most significant bit is the 'error_correction_present' bit. This

 // bit indicates whether or not error correction is used within the packet.

 //

 // Check whether the 'error_correction_present' bit is set or cleared.

 if (b & 0x80) {

 // The error_correction_present bit is set. This means error

 // correction data is present.

 // Begin processing error correction data.

 int error_correction_len_type;

 int error_correction_data_len;

 int error_correction_data;

 // The error_correction_len_type field specifies the size of

 // the error_correction_data_len field.

 // error_correction_len_type must equal 2.

 error_correction_len_type = 2;

 // read the error_correction_data_len field

 error_correction_data_len = GetWord();

 // Read the error_correction_data array. The error_correction_data array holds
 // an array of bytes that contain the actual per-packet data required to implement the
 // selected error correction method. One of a number of error correcting schemes may
 // be used.

 while (error_correction_data_len--) {

 error_correction_data = GetByte();

 }

 // End processing error correction data

 // Get the next byte...

 b = GetByte();

 }

 // Assume one payload for now...

 pPacket->cPayload = 1;

 // Does this packet have multiple payloads in it?

 g_fMultiplePayloads = b & 0x01;

 // Determine type of the padding field...

 g_PaddingLenType = (b & 0x18) >> 3;

 // Read next byte...

 b = GetByte();

 // Determine the type of the offset field...

 g_OffsetLenType = (b & 0x0c) >> 2;

 // Read the padding field...

 g_cbPadding = GetVariableSizeField(g_PaddingLenType);

 {

 // Here we process the "clock_data" field. The "clock_data" field contains

 // data representing time information. This data includes a "clock_license" that contains

 // a system clock reference (in milliseconds) that drives the progression of time.

 // This data also includes a "clock_duration" that specifies the effective validity

 // of the clock license (in milliseconds).

 clock_data clockData;

 // read in the "clock license" field of the "clock_data"

 clockData.clock_license = GetDword();

 // read in the the "clock_duration" field of the "clock_data"

 clockData.clock_duration = GetWord();

 // Read the "Send Time". ("Send Time" is ignored unless the player is receiving the stream from a Windows Media server.)

 pPacket->SendTime = clockData.clock_license;

 // Read the "duration" ("Duration" is ignored by players.)

 Duration = clockData.clock_duration;

 }

 if (g_fMultiplePayloads) {

 b = GetByte();

 // Determine number of payloads...

 pPacket->cPayload = (b & 0x3f);

 // Determine type of the payload length field...

 g_PayloadLenType = (b & 0xc0) >> 6;

 }

 // Get all the payloads...

 for (iPayload = 0; iPayload < pPacket->cPayload; iPayload++) {

 ParsePayload(pPacket, &pPacket->rgPayload[iPayload]);

 }

};

// Used to parse a single payload inside a packet.

//

static void ParsePayload(PACKET *pPacket, PAYLOAD *pPayload)

{

 BYTE b;

 int replicated_data_len;

 // Read the first byte...

 b = GetByte();

 // Bits 0-6 are the stream number...

 pPayload->StreamNum = b & 0x7f;

 // Bit 7 is the key frame flag...

 pPayload->fKeyFrame = (b & 0x80) >> 7;

 // Read the ObjectId field...

 pPayload->ObjectId = GetByte();

 // Read the Offset field...

 pPayload->Offset = GetVariableSizeField(g_OffsetLenType);

 // Read the "Replicated Data Length" byte. This is the length of the "replicated_data" object in this payload.

 replicated_data_len = GetByte();

 // Assume this is not a "compressed payload"...

 pPayload->fContainsMultipleDataObjects = 0;

 // Check whether or not this is a "compressed payload"

 if (replicated_data_len == 0) {

 // Not a recoginized form of payload, so continue.

 }

 else if (replicated_data_len == 1) {

 // This is a "compressed payload" which means it holds

 // multiple data objects.

 pPayload->fContainsMultipleDataObjects = 1;

 // In the "compressed payload" case, the presentation time is

 // stored in the Offset field, and the Offset is assumed to be zero.

 //

 // The presentation time is the presentation time for the first

 // data object. The other presentation times are calculated

 // using the presentation time delta.

 //

 pPayload->PresentationTime = pPayload->Offset;

 pPayload->Offset = 0;

 pPayload->PresentationTimeDelta = GetByte();

 }

 else if (replicated_data_len < 8) {

 // not a recognized form of payload

 // skip over the "replicated data"

 g_iInput += replicated_data_len;

 }

 else if (replicated_data_len >= 8) {

 // This is a normal payload. Holds one data object.

 // Total size of the data object. (Note, a data

 // object may be split into sections. This is the

 // sum of all sections.)

 pPayload->cbObjectSize = GetDword();

 // Presentation time.

 pPayload->PresentationTime = GetDword();

 // skip over extra "replicated data" (if any)...

 g_iInput += (replicated_data_len - 8);

 }

 if (g_fMultiplePayloads) {

 // if there are multiple payloads, then each payload

 // has a "payload length". (Note: this is the size

 // of the data object in the payload. It does not

 // include the payload header.)

 pPayload->cbData = GetVariableSizeField(g_PayloadLenType);

 }

 else {

 // There is only a single payload in this packet.

 // That means we should calculate the size of the payload

 // by subtraction:

 // Note: this is the size of the data object in the payload.

 // It does not include the payload header.

 pPayload->cbData = g_cbPacketSize - g_cbPadding - g_iInput;

 }

 // Here's the data object:

 pPayload->pData = g_pInput + g_iInput;

 // Move the beginning of the next payload...

 g_iInput += pPayload->cbData;

}

3.3.2.1
Packet and payload parsing reference code

// ParsePacket.c

//

// ASF Reference Source Code showing how to parse

// the interleave_packet object.

//

// Maximum number of payloads allowed in an ASF packet

#define MAX_PAYLOADS 64

// struct PAYLOAD

// ==============

//

// Contains the information parsed out of a payload.

//

typedef struct _PAYLOAD {

 // corresponds to the stream_id field in the stream properties object

 // in the ASF header section.

 unsigned char StreamNum;

 // time (in milliseconds) to render this data (e.g. time to

 // display the video frame or play the audio samples)

 unsigned int PresentationTime;

 // If this payload contains multiple data objects (see

 // fContainsMultipleDataObjects below) then this is the

 // time delta between each data object's presentation time.

 unsigned char PresentationTimeDelta;

 // All pieces of an object have the same ObjectId. A data object

 // will be divided into pieces if it is too big to fit into

 // a single payload. The ObjectId cycles from 0 to 255 and is

 // used by the player to reassemble the complete data object.

 unsigned char ObjectId;

 // The object offset is the number of bytes from the beginning

 // of a data object to the piece of the data object stored in

 // this payload. This is useful in the case where a large data object

 // has been split into pieces which fit inside payloads.

 unsigned int Offset;

 // This is the size of the entire data object (i.e. sum of all sections)

 unsigned int cbObjectSize;

 // Is this a keyframe? (video only)

 unsigned int fKeyFrame;

 // If true, then pData points to a buffer containing a series

 // of data objects, each preceded by a one-byte size field.

 //

 // If false, then pData points to a single data object.

 int fContainsMultipleDataObjects;

 // Size of this data object in bytes. (If the payload

 // contains multiple data objects, then this is the total

 // size of all the packed data objects together and includes

 // the one byte size fields that precede each data object.)

 unsigned int cbData;

 // Pointer to the beginning of this data object (or series of

 // packed data objects -- see flag fContainsMultipleDataObjects above).

 unsigned char *pData;

} PAYLOAD;

// struct PACKET

// =============

//

// Contains the information parsed out of a interleave_packet

// object in an ASF multimedia stream.

//

typedef struct _PACKET {

 // send time for this packet (ignored by the player unless it is receiving the stream from a Windows Media server)

 unsigned int SendTime;

 // count of payloads

 unsigned int cPayload;

 // array of payloads

 PAYLOAD rgPayload[MAX_PAYLOADS];

} PACKET;

// See full description below.

void ASFParsePacket(unsigned char *pInput, long cbPacketSize, PACKET *pPacket);

// private data

static unsigned char *g_pInput; // input buffer

static int g_iInput; // index into input buffer

static int g_fMultiplePayloads; // are there multiple payloads in this packet?

static int g_cbPacketSize; // size of this packet

static int g_cbPadding; // number of bytes of padding at the end of this packet

static int g_OffsetLenType; // type of the Offset field (0 = not present, 1 = 'byte', 2 = 'word', 3 = 'dword')

static int g_PaddingLenType; // type of the Padding Length field (0 = not present, 1 = 'byte', 2 = 'word', 3 = 'dword')

static int g_PayloadLenType; // type of the Payload Length field (0 = not present, 1 = 'byte', 2 = 'word', 3 = 'dword')

// types used in this file

typedef unsigned char BYTE;

typedef unsigned short WORD;

typedef unsigned long DWORD;

static void ParsePayload(PACKET *pPacket, PAYLOAD *pPayload);

BYTE GetByte()

{

 BYTE b;

 b = g_pInput[g_iInput];

 g_iInput++;

 return b;

}

WORD GetWord()

{

 WORD w = * ((WORD *) (g_pInput + g_iInput));

 g_iInput += 2;

 return w;

}

DWORD GetDword()

{

 DWORD dw = *((DWORD *) (g_pInput + g_iInput));

 g_iInput += 4;

 return dw;

}

DWORD GetVariableSizeField(int type)

{

 switch(type)

 {

 case 0x00:

 return 0;

 case 0x01:

 return (DWORD) GetByte();

 case 0x02:

 return (DWORD) GetWord();

 case 0x03:

 return (DWORD) GetDword();

 default:

 // This is an error.

 return 0;

 }

}

// This is the "clock_data" field which is present in all ASF packets.

// The "clock_data" field contains data representing time information. This data includes

// a "clock_license" that contains a system clock reference (in milliseconds) that drives

// the progression of time.

// This data also includes a "clock_duration" that specifies the effective validity

// of the clock license (in milliseconds).

typedef struct _clock_data {

 DWORD clock_license;

 WORD clock_duration;

} clock_data;

//

// ASFParsePacket

// ===========

//

// Purpose;

// This parses an 'interleave_packet' object in an ASF multi-media stream.

//

// Input:

// pInput = pointer to a buffer containing an ASF interleave_packet

// cbPacketSize = this is the size of the packets in this ASF stream

// (obtained by reading the min_interleave_packet_size32 field

// from the 'properties' object in the ASF header section).

//

// Output:

// pPacket = A filled-in PACKET structure containing all the fields that a player

// need to decode and render this packet. (See description of the

// PACKET structure above for more details.)

//

void ASFParsePacket(BYTE *pInput, long cbPacketSize, PACKET *pPacket)

{

 BYTE b;

 BYTE *pb, *pbMax;

 int Duration;

 unsigned int iPayload;

 // Set up our private state...

 g_pInput = pInput;

 g_iInput = 0;

 g_cbPacketSize = cbPacketSize;

 // zero initialize the packet structure...

 pb = (BYTE *) pPacket;

 pbMax = ((BYTE *) pPacket) + sizeof(PACKET);

 while (pb < pbMax) { *pb++ = 0; }

 // Read first byte...

 b = GetByte();

 // The most significant bit is the 'error_correction_present' bit. This

 // bit indicates whether or not error correction is used within the packet.

 //

 // Check whether the 'error_correction_present' bit is set or cleared.

 if (b & 0x80) {

 // The error_correction_present bit is set. This means error

 // correction data is present.

 // Begin processing error correction data.

 int error_correction_len_type;

 int error_correction_data_len;

 // The error_correction_len_type field specifies the size of

 // the error_correction_data_len field.

 // error_correction_len_type must equal 2.

 error_correction_len_type = 2;

 // read the error_correction_data_len field

 error_correction_data_len = GetWord();

 // End processing error correction data

 // Get the next byte...

 b = GetByte();

 }

 // Assume one payload for now...

 pPacket->cPayload = 1;

 // Does this packet have multiple payloads in it?

 g_fMultiplePayloads = b & 0x01;

 // Determine type of the padding field...

 g_PaddingLenType = (b & 0x18) >> 3;

 // Read next byte...

 b = GetByte();

 // Determine the type of the offset field...

 g_OffsetLenType = (b & 0x0c) >> 2;

 // Read the padding field...

 g_cbPadding = GetVariableSizeField(g_PaddingLenType);

 {

 // The "clock_data" field is processed here. The "clock_data" field contains

 // data representing time information. This data includes a "clock_license" that contains

 // a system clock reference (in milliseconds) that drives the progression of time.

 // This data also includes a "clock_duration" that specifies the effective validity

 // of the clock license (in milliseconds).

 clock_data clockData;

 // read in the "clock license" field of the "clock_data"

 clockData.clock_license = GetDword();

 // read in the the "clock_duration" field of the "clock_data"

 clockData.clock_duration = GetWord();

 // Read the "Send Time". ("Send Time" is ignored unless the player is receiving the stream from a Windows Media server.)

 pPacket->SendTime = clockData.clock_license;

 // Read the "duration" ("Duration" is ignored by players.)

 Duration = clockData.clock_duration;

 }

 if (g_fMultiplePayloads) {

 b = GetByte();

 // Determine number of payloads...

 pPacket->cPayload = (b & 0x3f);

 // Determine type of the payload length field...

 g_PayloadLenType = (b & 0xc0) >> 6;

 }

 // Get all the payloads...

 for (iPayload = 0; iPayload < pPacket->cPayload; iPayload++) {

 ParsePayload(pPacket, &pPacket->rgPayload[iPayload]);

 }

};

// Used to parse a single payload inside a packet.

//

static void ParsePayload(PACKET *pPacket, PAYLOAD *pPayload)

{

 BYTE b;

 int replicated_data_len;

 // Read the first byte...

 b = GetByte();

 // Bits 0-6 are the stream number...

 pPayload->StreamNum = b & 0x7f;

 // Bit 7 is the key frame flag...

 pPayload->fKeyFrame = (b & 0x80) >> 7;

 // Read the ObjectId field...

 pPayload->ObjectId = GetByte();

 // Read the Offset field...

 pPayload->Offset = GetVariableSizeField(g_OffsetLenType);

 // Read the "Replicated Data Length" byte. This is the length of the "replicated_data" object in this payload.

 replicated_data_len = GetByte();

 // Assume this is not a "compressed payload"...

 pPayload->fContainsMultipleDataObjects = 0;

 // Check whether or not this is a "compressed payload"

 if (replicated_data_len == 0) {

 // Not a recoginized form of payload, so continue.

 }

 else if (replicated_data_len == 1) {

 // This is a "compressed payload" which means it holds

 // multiple data objects.

 pPayload->fContainsMultipleDataObjects = 1;

 // In the "compressed payload" case, the presentation time is

 // stored in the Offset field, and the Offset is assumed to be zero.

 //

 // The presentation time is the presentation time for the first

 // data object. The other presentation times are calculated

 // using the presentation time delta.

 //

 pPayload->PresentationTime = pPayload->Offset;

 pPayload->Offset = 0;

 pPayload->PresentationTimeDelta = GetByte();

 }

 else if (replicated_data_len < 8) {

 // not a recognized form of payload

 // skip over the "replicated data"

 g_iInput += replicated_data_len;

 }

 else if (replicated_data_len >= 8) {

 // This is a normal payload. Holds one data object.

 // Total size of the data object. (Note, a data

 // object may be split into sections. This is the

 // sum of all sections.)

 pPayload->cbObjectSize = GetDword();

 // Presentation time.

 pPayload->PresentationTime = GetDword();

 // skip over extra "replicated data" (if any)...

 g_iInput += (replicated_data_len - 8);

 }

 if (g_fMultiplePayloads) {

 // if there are multiple payloads, then each payload

 // has a "payload length". (Note: this is the size

 // of the data object in the payload. It does not

 // include the payload header.)

 pPayload->cbData = GetVariableSizeField(g_PayloadLenType);

 }

 else {

 // There is only a single payload in this packet.

 // That means we should calculate the size of the payload

 // by subtraction:

 // Note: this is the size of the data object in the payload.

 // It does not include the payload header.

 pPayload->cbData = g_cbPacketSize - g_cbPadding - g_iInput;

 }

 // Here's the data object:

 pPayload->pData = g_pInput + g_iInput;

 // Move the beginning of the next payload...

 g_iInput += pPayload->cbData;

}
2.3.3 ASF Index Section

The optional index section may be used to look up the packet which is closest to a given presentation time. The index is not required for seeking.
typedef struct indexEntry {

QWORD packetNumber;

DWORD msPresentationTime;

// bit 0 = fKeyFrame

// bits 1 – 31 = reserved (must be set to zero)

DWORD flags;

};

typedef struct index_section{

DWORD cEntries;

index_entry_object indexEntry[cEntries];

} index_section;

Tdoc S4-AHP007 Appendix C
Page 10 of 10
2/7/2001

