3GPP TSG-SA Codec Working Group

TSGS4 AHP 008
TSG-S4 AHG: February 8 – 9, 2001, Lund, SE

Source:
Philips

Title:
Audio codec for PSS: AAC Complexity analysis

Document for:
Information

Agenda Item:

1 Introduction

This document provides detailed information on the complexity of the MPEG-4 AAC-LC and AAC-LTP audio object types [1][2]. Presented are the computational complexity, read-write storage and read-only storage, based on complexity studies by MPEG [3][4][5].

We desire to quantify the complexity of the tools in the MPEG-4 Advanced Audio Coding (AAC) decoder. They are:

· Huffman decoding

· inverse quantisation and scaling

· M/S dematrixing

· intensity stereo

· perceptual noise substitution (PNS)

· long term prediction (LTP)

· temporal noise shaping (TNS)

· inverse modified discrete cosine transform (IMDCT)

The coupling channel is omitted here because only mono and stereo channel configurations are proposed within the scope of 3G mobile equipment.

2 Constraints and assumptions

Unless otherwise indicated, complexity is specified in terms of

· machine instructions required to realize the tool’s computations, as run on a typical (but unspecified) programmable digital signal processor

· read/write storage locations

· read-only storage locations

We assume that:

· the target machine uses only IEEE floating point arithmetic, so that all floating point data require four bytes of storage. All storage is specified in terms of 32-bit words.

· the coder block size is 1024 input samples, equivalent to 1024 spectral coefficients per channel.

· an audio signal is sampled at 48 kHz, 16-bits per sample

· the compressed bit rate is 64000 bits per second per audio channel

Furthermore, we only indicate storage that is required by a tool and cannot be shared or re-used by other tools. Specifically, we do not count temporary, stack-based scratch storage (“automatic” variables), as such storage is implicitly shared across tools.

Unless explicitly indicated, all complexity figures are for one audio channel i.e. mono.

3 Summary of Tool Complexity

The following tables summarize the complexity of each tool based on number of instructions, amount of read-write storage and amount of read-only storage for the AAC Low Complexity profile and the Long-Term Prediction (LTP) tool. Storage for the program itself has not been counted. The tables first list complexity on a per-channel basis and then factor this up to get the complexity for a 2-channel coder. Resources scale linearly with some exceptions: M/S joint stereo and intensity stereo are stereo pair operations. Furthermore, read-only memory is obviously a shared resource so that its complexity is the same for 1- and 2-channel coders.

The most revealing data in the tables is the last column, which lists the complexity of a tool’s requirements (instructions, read-write storage or read-only storage) as a percentage of the total amount of that resource used in the entire stereo decoder.

Table 1 through Table 3 summarize the complexity of the AAC Low Complexity and AAC LTP profile.

Table 1: Summary of Instruction Complexity

1 channel
2 channels

Instr.
Instr.
Percent

Huffman, pulse decode
13657
27314
20.6 %

Inv. quant. and scale
1708
3416
2.6 %

M/S synthesis
-
856
0.6 %

LTP
22528
45056
33.9 %

PNS
0
0
0.0 %

TNS (max)
8130
16260
12.2 %

IMDCT
19968
39936
30.1 %

Totals
65991
132838
100.0 %

Table 2: Summary of Read-Write Storage

1 channel
2 channels

Words
Words
Percent

Input buffer
192
384
7.0 %

Output
512
1024
18.6 %

LTP
512
1024
18.6 %

PNS
1
2
0.0 %

Working buffer
1024
2048
37.2 %

IMDCT state vars
512
1024
18.6 %

Totals
2753
5506
100.0 %

Table 3: Summary of Read-Only Storage

1 channel
2 channels

Words
Words
Percent

Huffman decode

995
24.5 %

Inv. quant. and scale

256
6.3 %

LTP

8
0.2 %

PNS

500
12.3 %

TNS

24
0.6 %

IMDCT

2270
56.0 %

Totals

4053
100.0 %

4 Specification of AAC Tool Complexity

4.1 Input/Output Buffers

Because of the encoder bit reservoir structure, a real-time decoder receiving a bitstream over a constant-rate channel must, to accommodate worst case buffering conditions, collect a number of input bits equal to the nominal rate per block plus the size of the encoder bit buffer before it can start decoding. This constraint specifies the minimum input buffer size. On output, we assume that the IMDCT result is copied to a 16-bit PCM output buffer in a conventional double-buffered manner.

Table 4: Input/Output Buffer Storage Requirements

Bits
Words

Input buffer
6144
192

Output buffer (two 16-bit values per word)

512

Totals

704

4.2 Huffman Decode

In order to decode a Huffman codeword the decoder must traverse a Huffman code tree from “root node” to “terminal node” (or leaf). The route taken depends on the Huffman codeword that is being decoded: if the next bit to be processed in the codeword is a “zero” then the “left” branch is taken relative to the current node; otherwise the “right” branch is taken. The decoder must be at the root note when it begins processing a new Huffman codeword, and should be at a terminal node when the entire codeword has been processed. The code fragment that does this processing is

v = *p;

while (v & Tnleaf)

{

if (cword & 1)

{

p++;

}

else

{

p += v & (Tnleaf-1);

}

v = *p;

cword >>= 1;

}

where to start p points to the root node, cword contains the Huffman codeword to process (lsb first) and Tnleaf is a mask equal to 0x8000 that signals a terminal node. Based on this code it requires approximately 10 instructions per bit for the Huffman decoding. Table 5 shows the instruction complexity for both peak bits per block (3.5 times average) and average bits per block. The summary statistics use the complexity for average bits per block because, in the case of a software-only decoder, there are software speed-ups that can be used to reduce that complexity to 2 instructions per bit (using additional tables) and in the case of an ASIC decoder, the Huffman decoding is highly amenable to hardware acceleration.

Pulse lossless coding follows the Huffman decode of the quantised spectral coefficients. It has a very simple reconstruction algorithm as follows:

k = start;

for (i=0; i<=number_pulse; i++)

{

k += pulse_offset[i];

if (quant_coef[k] > 0)

{

quant_coef[k] += pulse_amp[i];

}

else

{

quant_coef[k] -= pulse_amp[i];

}

}

The bitstream syntax permits “number_pulse” to be no greater than 4 and the loop requires no more than 10 instructions per iteration, so the instruction complexity for pulse lossless coding is no more than 40 instructions per block, as indicated in Table 5. Based on figures for peak compression (50 bits per block or 4%) and average compression (0.25 percent), a value of one tenth the peak complexity is used to approximate the average complexity.

Table 5: Huffman Decoding Instruction Complexity

Channel bitrate
64000

Sample rate
48000

Block length
1024

peak
average

Bits per block
4778.7
1365.3

Instructions per bit
10
10

Pulse lossless coding
40
4

Totals
47827
13657

The Huffman codewords can represent signed or unsigned values. Table 6 shows the storage complexity for the Huffman codebooks in which spectrum tables 1, 2, 5 and 6 are signed.

Huffman decoding requires the storage of the tree and the value corresponding to the codeword. Interior nodes must store an offset to the child nodes. The size of this offset does not have to be any larger than the total number of nodes in the table. In Table 6, the offset is 8 or 16 bits. Furthermore, the offset to the left child can be implicit (it can always follow the parent) so only one offset must be stored. At the terminal notes instead of storing an offset, the decoded value is stored, in compressed form if necessary.

Table 6: Huffman Decoding Read-Only Storage

Huffman Table

Leaves
Nodes
Wds/Nd
Words

Scale factor

121
242
0.25
61

Spectrum
LAV
Tuple

1
1
4
81
162

41

2
1
4
81
162

41

3
2
4
81
162

41

4
2
4
81
162

41

5
4
2
81
162

41

6
4
2
81
162

41

7
7
2
64
128

32

8
7
2
64
128

32

9
12
2
169
338
0.5
169

10
12
2
169
338

169

11
16
2
289
578

289

Totals

2724

995

4.3 Inverse Quantisation and Scaling

Each coefficient must be inverse quantised by a 4/3 power nonlinearity and then scaled by the quantiser stepsize. Since the range of values represented by the decoded Huffman values is limited by the codebook itself (except for the escape codebook), the inverse quantisation can be done by table lookup. The stepsize, or scale factor, is itself logarithmically encoded and is similarly limited in dynamic range, so that it can be decoded by a table lookup as well. We assume that only 854 spectral coefficients (20 kHz bandwidth) must be inverse quantised and scaled by a scale factor. This is summarized in Table 7.

Table 7: Inverse Quantisation and Scale Factor Complexity

Read-Only Storage
Instructions

Inverse quantisation
128
854

Stepsize scaling
128
854

Totals
256
1708

4.4 M/S Synthesis

This is a very simple tool that couples two channels into a stereo pair. For each sample in each channel of the stereo pair the samples may already be the left and right signals, in which case no computation is necessary, or the pair must be dematrixed via one add and one subtract per pair of samples. Since the computation is done in-place, there is no additional storage requirements. It is assumed that only a 20 kHz bandwidth needs the M/S computation. This is summarized in Table 8
Table 8: M/S Synthesis Complexity

Storage
Instructions

Per block per stereo pair
0
854

4.5 PNS

This tool calculates spectral coefficients in the decoder based on random vectors rather than from Huffman coded symbols and inverse quantisation. This is done selectively on a scalefactor band and group basis when perceptual noise substitution is flagged. In the decoding process, for each PNS-coded coefficient, one random generator instruction is substituted for one spectral coefficient inverse quantisation. Hence, we incur no computational complexity cost for this function. The storage complexity is given in Table 9.

Table 9: Perceptual Noise Substitution Complexity

per block

Instruction complexity
0

Read-only memory complexity
500

Read-write memory complexity
1

4.6 Intensity Stereo

In this tool a region of coefficients for a stereo pair is identical except for a “position” scaling of the coefficients of the second channel in the pair. Even though intensity stereo saves bits, the encoder will allocate those bits elsewhere (which is the point of intensity stereo compression) such that the Huffman decoding complexity is unchanged. Similarly, even though the right channel of intensity stereo coded regions do not have scale factors, they do have intensity stereo position factors that require the same decoding complexity. Left-channel intensity stereo regions must have inverse quantisation and scaling applied. Right-channel intensity stereo regions use the left-channel inverse quantised and scaled coefficients, which must be re-scaled by the intensity position factors. Hence the net complexity of intensity stereo is a savings of one inverse quantisation per intensity stereo coded coefficient. Intensity stereo does not use any additional read-only or read-write storage. This complexity estimate is summarized in Table 10.

Table 10: Intensity Stereo Complexity

per block

per IS coefficient
min
max

Instruction complexity per stereo pair
-1
0
-854

Read-only memory complexity
0
0
0

Read-write memory complexity
0
0
0

4.7 LTP

Long-term prediction reduces the redundancy between successive coding frames for parts of the signal that have a clear pitch property. Table 11 provides computational complexity information, Table 12 provides storage requirements.

Table 11: LTP Arithmetic Complexity

per spectral component
per block

prediction
2

MDCT
20

Total
22
22528

Table 12: LTP Storage Complexity

per block

Read-only memory complexity
8

Read-write memory complexity
512

4.8 TNS

Temporal noise shaping (TNS) has a variable load, depending on the order of its filters and the number of spectral coefficients that are filtered. Table 13 shows the “worst-case” complexity permitted by TNS. Table 14 shows that TNS requires negligible storage.

Table 13: TNS Maximum Instruction Complexity

Maximum filter order
12

Maximum coefs to filter
672

Instructions

Filter coef inv quant
66

Filtering
8064

Totals
8130

Table 14: TNS Storage Requirements

Words

Read-write storage

0

Read-only storage
Filter coef inv quant tables
24

4.9 IMDCT

It is assumed that the IMDCT calculation is done in floating point, although fixed point realizations are feasible. The only requirement is that any round-off noise due to computational error (such as finite word length errors) be less than 1/2 lsb after the transform result is rounded to 16-bit PCM. Fixed point realizations using 24 bit words are certainly adequate, and word lengths as low as 20 or 21 bits may be sufficient. One compromise to this requirement is made in this analysis, which is that the windows used in the overlap-add portion of the transform are stored as 16-bit. This is reasonable since the window and overlap-add is the final computation prior to rounding to 16-bit PCM and therefore computational errors do not accumulate.

Table 15 shows the IMDCT complexity in multiply/add operations per block (1024 samples). Table 16 and Table 17 show the IMDCT complexity in terms of words of read/write and read-only storage. Note that the coefficient storage listed in Table 16 is actually the decoder’s “working storage” and is used by all the tools in the decoder.

Table 15: IMDCT Arithmetic Complexity

M = 1024

Instructions

first modulation

2*M

2048

complex FFT of size

M2 = M/2
512

number of bfy

(M2/2)
256

operations per bfy

6
6

number of stages

log2(M2)
9

total = 6*log2(M2)(M2/2)

13824
13824

second modulation

2*M

2048

window and ovlp add

2*M

2048

Total

19968

Table 16: IMDCT Read/Write Storage Requirements

Words

coefficient storage
1024

state variable storage
512

Totals
1536

Table 17: IMDCT Read-Only Storage Requirements

Block length

128
1024

Words
Words

First modulation sin/cos table

64
512

FFT twiddle table

12
18

Second modulation sin/cos table

512

Windows are 16-bit values

Sin window table
64

Alternate window table
64

Dolby window table

512

Alternate window table

512

Total

204
2066

5 References

[1]
3GPP TSG S4#14 (00)0592, Audio codec for PSS

[2]
3GPP TSG S4#15 (01)0018, Audio codec for PSS: Additional information

[3]
ISO/IEC JTC1/SC29/WG11 N2957, “Revised Report on Complexity of MPEG-2 AAC Tools”, Melbourne, October 1999

[4]
ISO/IEC JTC1/SC29/WG11 M2497, “Report on Nokia Long Term Predictor for MPEG-4 Audio”, Stockholm, June 1997

[5]
ISO/IEC JTC1/SC29/WG11 M3605, “Report of Ad-Hoc Group on MPEG-4 Audio Tools Complexity”, Dublin, June 1998

� Ralf.Funken@philips.com

Page: 1/1
8
Page 8/1

