3GPP TSG-SA Coded Working Group
TSGS4-AHP002

PSM Ad-hoc Meeting #1: February 8-9, 2001, Lund, Sweden



Source:
Nokia

Title:
Pre-Decoder Buffer

Document for:
Discussion & Approval

Agenda Item:
4.4

1 Introduction

In conversational packet-switched multimedia systems, e.g., in IP-based video conferencing systems, different types of media are normally carried in separate packets. Moreover, packets are typically carried on top of a best-effort network that cannot guarantee a constant transmission delay, but rather the delay may vary from packet to packet. Consequently, packets having the same presentation (playback) time-stamp may not be received at the same time, and the reception interval of two packets may not be the same as their presentation interval (in terms of time). Thus, in order to maintain playback synchronization between different media types and to maintain the correct playback rate, a multimedia terminal typically buffers received data for a short period (e.g. less than half a second) in order to smooth out delay variation. Herein, we refer this type of a buffer component as a delay jitter buffer. Buffering can take place before and/or after media data decoding.

Delay jitter buffering is also applied in streaming systems. Due to the fact that streaming is a non-conversational application, the delay jitter buffer required may be considerably larger than in conversational applications. When a streaming player has established a connection to a server and requested a multimedia stream to be downloaded, the server begins to transmit the desired stream. The player does not start playing the stream back immediately, but rather it typically buffers the incoming data for a certain period, typically a few seconds. Herein, this buffering is referred to as initial buffering. Initial buffering provides the ability to smooth out transmission delay variations in a manner similar to that provided by delay jitter buffering in conversational applications. In addition, it may enable the use of  link, transport, and / or application layer retransmissions of lost protocol data units (PDUs). The player can decode and play buffered data while retransmitted PDUs may be received in time to be decoded and displayed at the scheduled moment.

Initial buffering in streaming clients provides yet another advantage that cannot be achieved in conversational systems: it allows the data rate of the media transmitted from the server to vary. In other words, media packets can be temporarily transmitted faster or slower than their playback rate as long as the receiver buffer does not overflow or underflow. The fluctuation in the data rate may originate from two sources:

1. The compression efficiency achievable in some media types, such as video, depends on the contents of the source data. Consequently, if a stable quality is desired, the bit-rate of the resulting compressed bit-stream varies. Typically, a stable audio-visual quality is subjectively more pleasing than a varying quality. Thus, initial buffering enables a more pleasing audio-visual quality to be achieved compared with a system without initial buffering, such as a video conferencing system.

2. It is commonly known that packet losses in fixed IP networks occur in bursts. In order to avoid bursty errors and high peak bit- and packet-rates, well-designed streaming servers schedule the transmission of packets carefully. Packets may not be sent precisely at the rate they are played back at the receiving end, but rather the servers may try to achieve a steady interval between transmitted packets.
In a nutshell, initial buffering enables the accommodation of fluctuations in transmitted data rate that fall into two categories, encoding or server-specific delay variation and network transmission related delay variation. In this way initial buffering helps to provide a more stable audio-visual quality and to avoid network congestion and packet losses. 

As discussed above, initial buffering is a tool to cope with two types of delay variations: transmission delay variation due to network and transport protocol operation and server-specific delay variation. It is up to the streaming client implementation to take the former type of delay variation into account. We see no need to take the transmission delay variation into account when encoding and serving the media content. However, in order to allow the media data rate vary within the limits of the receiver-side buffer, streaming encoders and servers have to know the buffering capabilities of streaming clients. This contribution proposes mechanisms to define and signal the buffer capabilities of streaming clients.

2 Architectural Overview

Practical terminal implementation of receiver-side buffering requires a new buffering block in the terminal architecture (Figure 1 of TS 26.234). This buffering block is herein referred to as the pre-decoder buffer. Figure 1 shows a simplified terminal block diagram including the proposed pre-decoder buffer block. 

[image: image1.wmf]Transport decoder(s)

Pre-decoder buffer

Source decoder(s)

Output


Figure 1. Pre-decoder buffer in terminal architecture.

The "Transport decoder" decapsulates the code-stream from the received RTP packets. The "Source decoder" decodes the code-stream into a raw format that can be played back. The "Pre-decoder buffer" operates as a temporary storage between transport decoding and source decoding. A common pre-decoder buffer is shared between all real-time media types that are transmitted on top of RTP.

Note that there may be a need for a post-decoder buffer that smooths out the decoding delay variations of different media decoders. This issue is specific to client implementation and need not be standardized. Note also that similar advantages to pre-decoder buffering could be achieved if all buffering takes place after decoding. However, this would require an unpractical amount of memory, as the media streams would be stored in an uncompressed form.

3 Buffering Algorithm

This section describes the proposed algorithm to buffer received data in streaming clients and to control the encoding and serving of streams. The algorithm assumes that there is a pre-decoder buffer as defined in section 2. 

There are two factors that affect the behavior of the buffering algorithm: the initial buffering time and the minimum pre-decoder buffer size. The initial buffering time refers to the time that elapses between the time when first media data packet is received and the time when the first media sample is played back. The minimum pre-decoder buffer size tells how many bytes of data the streaming client is capable of storing in addition to the buffering that takes place to cope with the transmission delay variation. In other words, the minimum pre-decoder buffer size is defined for zero-delay reliable transmission networks.

The algorithm is similar to the algorithms described in H.263 Annex B (Hypothetical Reference Decoder) and MPEG-4 Visual Annex D (Video buffering verifier). These algorithms define the buffering behavior for video codecs. Notice that these algorithms cannot be used to replace the proposed pre-decoder buffering algorithms, because they are applicable to video only. Moreover, the H.263 Hypothetical Reference Decoder does not support initial buffering or storing of multiple (non-B) frames into the buffer. Notice also that the proposed pre-decoder buffering algorithm is fully compatible with the named video buffering algorithms. In a practical implementation, the pre-decoder buffer and the video decoder buffer can be combined.

The transmitted RTP packet stream shall be constrained to comply with the requirements of the pre-decoder buffer defined as follows:

The pre-decoder buffer is initially empty.

Each received RTP packet shall be added to the buffer immediately when it is received. All protocol headers at RTP or any lower layer shall be removed.

Data shall not be removed during a period called the initial buffering time that is started when the first RTP packet is added to the buffer.

When the initial buffering time has expired, a playback timer is started.

A data chunk is removed from the pre-decoder buffer immediately when the playback timer reaches its scheduled playback time.

When the data is carried over a zero-delay reliable transmission network, the occupancy level of the pre-decoder buffer shall not exceed a certain level called the pre-decoder buffer size.

Notice that the requirements above describe the operation without intermediate pause requests. Each new play request (after a pause, for example) shall follow the same requirements. Notice also that the requirements above are based on the assumption of having a zero-delay reliable transmission network. Thus, in a practical implementation, client-side pre-decoder buffering is likely to be combined with network delay jitter buffering. Consequently, the actual pre-decoder buffer size in a streaming client is likely to be larger than the minimum pre-decoder buffer size discussed above, and the actual initial buffering time is also likely to be longer the initial buffering time discussed above.

4 Example of Pre-Decoder Buffering

Figure 2 gives an example of a data flow in a streaming system. Bars represent media frames or packets. Medium gray stands for video (e.g. H.263) whereas light gray stands for audio (e.g. AMR). Bar height represents the size of a frame (or a packet) in bytes. The processing flow runs from the top to the bottom, and time runs from left to right.

[image: image2.wmf]Source coding

Video

Audio

Transport coding

and transmission

Network

Reception and

transport decoding

Pre-decoder

buffering

Source decoding

and playback

Initial buffering time

time

Minimum 

buffer size


Figure 2. Example data flow of a streaming system.

At first, the input data is compressed. As a result, the video stream has a varying frame rate and frame size, and the audio stream has a constant frame rate but a varying frame size. Secondly, the compressed media streams are encapsulated into packets and transmitted to the network. While encapsulating, the server splits large video frames to multiple packets, and combines small audio frames to one packet. The server sends out packets in regular intervals. A constant transmission delay is assumed regardless of the packet size or any other factors. Thus, the time between received packets is the same as the time of the corresponding packets when they were sent. The received packets are stored to a pre-decoder buffer. After a certain initial buffering time, frames are pulled out from the buffer, and the frame removal rate is the same as the frame playback rate. The maximum buffer occupancy level determines the minimum pre-decoder buffer size.

5 Signalling of Pre-Decoder Buffer Characteristics

In order to ensure certain minimum buffering capabilities in streaming clients, the default buffer characteristics have to be defined. As described in section 3, the buffer characteristics can be defined by two factors: the initial buffering time and the minimum pre-decoder buffer size. Our proposal is that the default value for the initial buffering time is one second and the default minimum pre-decoder buffer size is 30720 bytes. The selection of the proposed default values is based on some practical experiments.

In order to allow streaming clients to signal and receive streams requiring more demanding buffering capabilities than the default capabilities, we propose signaling based on the SET_PARAMETER method of RTSP [1]. The client can request the server to set either one or both of the following parameters:

initialBufferingTimeInMSec: <initial buffering time in milliseconds>
preDecoderBufferSizeInBytes: <minimum pre-decoder buffer size in bytes>

Parameter values smaller than the default values are disallowed, and servers shall signal a "Bad Request" if such a request arrives. If the passed values are greater than or equal to the default values, servers shall verify the transmitted packet stream with the passed values according to the algorithm presented in section 3. The updated values shall be taken into use immediately when the request is received.

6 Conclusion

We propose to have a pre-decoder buffer as a mandatory part of a streaming client. Streaming clients should follow the defined buffering algorithm, and streaming servers shall verify that the transmitted data stream complies with the defined buffering algorithm. Furthermore, we propose that the characteristics of the pre-decoder buffer are defined by two factors: the initial buffering time and the minimum pre-decoder buffer size. These factors have certain default values that may be changed on the fly, and the updated values may be signaled to servers. 

References

[1] IETF RFC 2326, "Real Time Streaming Protocol (RTSP)", April 1998.







Page: 5/1

