3GPP TSG-SA WG4 MTSI ad-hoc #3
Tdoc S4-AHM062
11-13 December 2006, Paris, France
Source:
Siemens Networks
Title:
Proposed JBM Performance Requirement Measure
Agenda Item:
4
Document for:
Discussion and Approval
1 Introduction
This document presents a JBM performance requirement method which solves the problems we discovered and presented in S4-AHM061. The proposal is to replace the current working assumption by the proposed method.
2 Method for Estimating Jitter Buffer Management Performance
The present document concerns a method for determining a Jitter Buffer Management performance.

The technique described herein is an enhanced version of the method presented in Tdoc S4-AHM036. The enhanced version takes into accounts a general Jitter Buffer Management implementation and supports:

· reordering of speech frames received from the JBM in out-of-order sequence

· discarding of duplicated speech frames received from the JBM

· discontinuous transmission during silence period
· clock drift between sender and receiver endpoints.

The performance measured with the method described in the document can be compared with the minimum performance requirements as defined in section 8.2.2.2.

The performance metric output will provide the equivalent Cumulative Distribution Function (CDF) of the speech-frame stream overall delay introduced by the JBM under test and additionally it provides the Jitter Loss Rate in order to validate the compliance of a specific Jitter Buffer Management implementation to the JBM minimum performance requirements.

Such techniques permit a developer, a tester or a network operator to measure the performance of Jitter Buffer Management with no knowledge of the specific JBM implementation.

The proposed metric, in order to compute the Jitter Loss Rate value, accounts only for frame insertions and deletions during active speech.

[image: image1]
  Figure 1: Network model for jitter buffer performance estimation

1.1 Performance measurement: black box model
The black box model approach allows the testing of JBM performance for any Jitter Buffer Management implementation (static or adaptive) without knowledge about the implementation details.

The JBM performance measurement technique is based on the following concept that having a conceptual reference stream and having the corresponding JBM output stream, it is possible to compute the performance measurement using a template matching technique which provides a measure of the similarity between the reference stream and the measured output. 


[image: image11.emf]1234

Sender data streams

t

Regularly spaced

Sender

Channel

Sender

Channel

1

23

2

JBM input data streams

t

Jittered and delayed

1232

JBM output data streams

t

Regularly spaced

Jitter Buffer

Manager


Figure 2: Speech reference and sample speech test sequence comparison
The method is performed by sending a jittered and delayed data stream from a sender side to a receiver side through the Jitter Buffer Manager under test.  

The JBM output stream (regularly spaced stream) is then compared to a conceptual reference stream (regularly spaced Sender stream) in order to find the similarity measure.

The average buffering time can be derived from the amount of frame insertions or deletions in the JBM output stream.

The total amount of jitter-induced concealment operations can be derived from the amount of differences between conceptual reference stream and the JBM output stream. 

[image: image2.emf]1234

Conceptual reference stream

Blackboxmodel approach

t

Regularly spaced

1

23

2

JBM input data stream

t

Jittered and delayed

1232

JBM output data stream

t

Regularly spaced

Average

buffering

Time

Number of

Concealment

Operations

JBM

performance

estimation

Jitter Buffer

Manager

JBM Initial Waiting Time

Copy of 

JBM output


Figure 3: Black box model for testing JBM performance
1.2 Test execution

This section provides information on the test of a Jitter Buffer Management implementation. The Jitter Buffer Management under test can be a model simulation or a real implementation to be validated for compliance. 

The following procedure has to be used for the ANSI-C version of the metric.

1. Select a specific channel error profile.

2. Test the JBM implementation with the selected channel error profile providing in output:

a. The initial waiting time of the first frame

b. The sequence of the cardinal frame numbers of the dejittered output stream (see file format for details)

3. Run the metric providing in input:

a. The channel error profile as defined in the current draft 26.114

b. The sequence of the cardinal frame numbers of the dejittered output stream

c. The VAD information file as defined in the first description of the error channel profiles document

d. The number of frame per packet (VPR) 

e. The initial waiting time value of the first frame (ms), that is the time that the first frame of the stream spends in the JBM

The metric will provide in output:

f. Jitter Loss rate (%) in float format = JBM triggered concealed frames / Num. of transmitted frames

g. The overall delay for each frame (16-bit signed binary format) to be used for Cumulative Distribution Function computation. A separate Matlab tool is provided for adaptation from frame overall delays to CDF delay graphical representation. 

4. Compare the measured performance by the metric with the minimum performance requirements for each traffic channel model:

a. The total amount of jitter-induced concealment operations or jitter loss rate
b. the Cumulative Distribution Function (CDF) of the speech-frame stream overall delay

The compliance of the JBM under test with the minimum overall delay requirements can be assessed graphically checking if the CDF of the tested JBM against the corresponding reference one.

File format

The ANSI-C version of the metric receives in input the following files in 16-bit signed binary format: 

· The channel delay file as defined in the current draft 26.114

· The sequence of the cardinal frame numbers of the dejittered output stream.
The file describes the sequence of the speech frames delivered in output by the JBM under test and includes an array of 16-bit signed words defined as follows. 
For each frame the correspondent cardinal number (according to frame_ts) in the range: 1, 2, …., number_of_frames.
If a concealed frame is triggered by JBM in the sequence of the cardinal frame numbers should be inserted a 0 value.
If a packet is not delivered in output the corresponding cardinal frame number is not printed in the file.
If Speech Onset is detected and a time scaling procedure (variable time interval of silence insertion) is applied, the corresponding entry in the output sequence file is a negative number with modulus equal to inserted silence duration in ms.


[image: image3] 

· The VAD information file as defined in the first description of the error channel profiles document

· The number of frame per packet (VPR). It is expected equal to 1 for all error channel profiles except for channel 5 (in such a case the number of frame per packet is equal to 2).
· The initial waiting time value of the first frame. The input value should be provided in ms.

3 ANSI-C Code for JBM Performance Estimation

In this section, an ANSI-C code metric for estimating jitter buffer management performance is provided. 

/*

********************************************************************************

*                         INCLUDE FILES

********************************************************************************

*/

#include <stdlib.h>

#include <stdio.h>

void main (int argc, char **argv)

{


char *delayname, *jbmname, *vadname, *pktdelname, *deseqname;


FILE *delayfile, *jbmfile, *vadfile, *pktdelfile, *deseqfile;


short *reference;


short *channel_delay;


short *vad_flag;


short *jbmout;


short *vad_out;


short *path;


short *delay;


unsigned short *(*cost);


short prev_index, next_index;


short initial_waiting_time;


short sbts_offset=0;


short frames_per_pkt;


short packet_lost=0;


float desequences=0;


float avg_delay=0;


short i,j,k,n,p;


printf("Jitter Buffer Manager Metric - Siemens COM (2006)\n");


if(argc==8)


{



delayname=argv[1];



jbmname=argv[2];



vadname=argv[3];



frames_per_pkt=atoi(argv[4]);



initial_waiting_time=atoi(argv[5]);



deseqname=argv[6];




pktdelname=argv[7];


}


else


{

printf(" usage:\n JBMeter <channel delay file> <jitter buffer output file> <vad input file> <num of frames per pkt> <initial waiting time> <desequences file> <overall delay sequence file>\n");



printf(" files must be in binary format \n");



return;


}


if ((delayfile = fopen(delayname,"rb")) == NULL)


{

printf("Error - unable to open channel delay file %s for input\n",delayname);



return;


}


printf("\nChannel delay file:\t\t\t%s \n",delayname);


if ((jbmfile = fopen(jbmname,"rb")) == NULL)


{

printf("Error - unable to open jitter buffer output file %s for input\n",jbmname);



return;


}


printf("Jitter buffer output file:  %s \n",jbmname);


if ((vadfile = fopen(vadname,"rb")) == NULL)


{



printf("Error - unable to open  file %s for vad input info\n",vadname);



return;


}


printf("VAD input file:\t\t\t\t%s \n",vadname);


if ((pktdelfile = fopen(pktdelname,"wb")) == NULL)


{

printf("Error - unable to open file %s for packet output delays\n",pktdelname);



return;


}


printf("Output delay file:\t\t\t%s \n",pktdelname);


if ((deseqfile = fopen(deseqname,"wb")) == NULL)


{

printf("Error - unable to open file %s for concealments output\n",deseqname);



return;


}


printf("Output loss rate file:\t\t%s \n",deseqname);


reference=(short *)malloc(sizeof(short)*(7500*frames_per_pkt));


channel_delay=(short *)malloc(sizeof(short)*(7500*frames_per_pkt));


vad_flag=(short *)malloc(sizeof(short)*(7500*frames_per_pkt));


jbmout=(short *)malloc(sizeof(short)*(8000*frames_per_pkt));


cost=(unsigned short **)malloc(sizeof(unsigned short *)*(7500*frames_per_pkt));


p=7500*frames_per_pkt;


fread(channel_delay,sizeof(short),p,delayfile);


fread(vad_flag,sizeof(short),p,vadfile);


for (i=0;i<p;i++)


{



if ((channel_delay[i]==-1)&&(vad_flag[i]==1))




packet_lost++;



reference[i]=i+1;


}

/* Read output packet sequence numbers */


n=fread(jbmout,sizeof(short),8000*frames_per_pkt,jbmfile);  


path=(short *)malloc(sizeof(short)*(n+1));


delay=(short *)malloc(sizeof(short)*(n+1));


vad_out=(short *)malloc(sizeof(short)*n);


for(i=0;i<p;i++)



cost[i]=(unsigned short *)malloc(sizeof(unsigned short)*n);

/* output VAD mask generation from input VAD mask */

for (j=0;j<n;j++)


{
if (jbmout[j] <= 0) // if there is a void frame

        
{




prev_index = j;




next_index = j;




while (prev_index != 0) // search for a previous non-void frame





if (jbmout[prev_index] > 0)






break;





else






prev_index--;




while (next_index != (n+1)) // search for a next non-void frame





if (jbmout[next_index] > 0)






break;





else






next_index++;




if ((prev_index != 0) && (next_index != (n+1)))

if ((vad_flag[jbmout[prev_index]-1] == 1) && (vad_flag[jbmout[next_index]-1] == 1)) // if there is voice both before and after the void frame 
vad_out[j] = 1; // the output frame is marked as voiced





else
if (vad_flag[jbmout[j]-1] == 1) // if there is voice in the current output frame

vad_out[j] = 1; // the output frame is marked as voiced



}


}

/* Node cost initialization */

for (i=0;i<p;i++)



for (j=0;j<n;j++)




if (jbmout[j]==reference[i])





cost[i][j]=0;




else





cost[i][j]=4;

/* Transition cost computation */

for (j=1;j<n;j++)



cost[0][j] = cost[0][j-1] + cost[0][j] + 1;


for (i=1;i<p;i++)



cost[i][0] = cost[i-1][0] + cost[i][0] + 2;


for (j=1;j<n;j++)



for (i=1;i<p;i++)




if (cost[i-1][j-1]>>2 <= cost[i-1][j]>>2)





if (cost[i-1][j-1]>>2 <= cost[i][j-1]>>2)

cost[i][j] = ((cost[i-1][j-1]>>2)<<2) + cost[i][j];   // Optimal predecessor on diagonal





else

cost[i][j] = ((cost[i][j-1]>>2)<<2) + cost[i][j] + 1; // Optimal predecessor on horizontal


        
else



       

if (cost[i-1][j]>>2 < cost[i][j-1]>>2)




        
cost[i][j] = ((cost[i-1][j]>>2)<<2) + cost[i][j] + 2; 




// Optimal predecessor on vertical     





else

cost[i][j] = ((cost[i][j-1]>>2)<<2) + cost[i][j] + 1; // Optimal predecessor on horizontal 

/* Optimal path searching */

j=n-1; i=p-1; k=n-2;


path[n-1] = path[n] = p;


delay[n-1] = delay[n] = (n-p)*20;


desequences = 0;


while (i!=0 || j!=0)


{



if ((cost[i][j] & 3) == 0)                      // Diagonal transition



{

if ((jbmout[j] != reference[i]) && (vad_flag[reference[i]-1] == 1))   // desequence if frame exchange of an input voiced frame





desequences+= (jbmout[j]<0?-((float)jbmout[j])/20:1);           




path[k] = i;




delay[k] = delay[k+1] + (jbmout[j]<0?20+jbmout[j]:0);          



// Delay not incremented




i--; j--;   



}



else if ((cost[i][j] & 3) == 1)                 // Horizontal transition



{




path[k] = i + 1;




delay[k] = delay[k+1] + (jbmout[j]<0?jbmout[j]:-20);     




// Delay incremented by 20ms or less

if (vad_out[j] == 1) // if there is a frame marked as voiced in output





desequences+= (jbmout[j]<0?-((float)jbmout[j])/20:1);   




// frame insertion: desequence    




j--;



}



else if ((cost[i][j] & 3) == 2)                 // Vertical Transition



{




k++; i--;  




path[k] = i + 1;




// delay decremented by 20ms * number of lost pkts




delay[k] = delay[k+1] + 20*(path[k+1] - path[k] - 1);

if (vad_flag[reference[i+1]-1] == 1) // if there is a lost frame marked as voiced in input





desequences++;   // frame loss: desequence



}



k--;


}


for(j=0;j<n;j++)



if (jbmout[j]<0)





sbts_offset+=(20+jbmout[j]);

/* JBM performance scores */

for (j=0;j<n;j++)


{



delay[j]+= initial_waiting_time + channel_delay[jbmout[0]-1] - sbts_offset;



avg_delay+= delay[j];


}


avg_delay/=n;


desequences = (desequences-packet_lost)/p*100;

printf("\nSuccessfully ended \nAvg Packet Delay: %3.2f \nJitter Loss Rate: %3.3f%%\nPacket lost:\t  %u\n",avg_delay,desequences,packet_lost);


/* export data for Packet delay CDF computation */


fwrite(delay,sizeof(short),n,pktdelfile);


/* export data for desequences computation */


fwrite(&desequences,sizeof(float),1,deseqfile);


fclose(delayfile);


fclose(jbmfile);


fclose(vadfile);


fclose(pktdelfile);


fclose(deseqfile);


return;

}

4 JBM Performance Metric Detailed Description

The goal of JBM performance metric is to find the similarity between two sequences of speech frames. 

The metric that ﬁnds greatest use in template matching is based on the “cost” associated with converting the test sequence (JBM output frame sequence) to the reference sequence (Sender frame sequence).The metric is defined as the minimum number of fundamental operations needed to transform the test sequence into the reference sequence. 

Distance definition 

Given two sequences X and Y, the distance is the minimum number of basic operations – speech frame insertions and speech frame deletions - needed to transform X into Y.

Where the basic operations are:

· Speech frame insertion: a speech frame in Y is inserted increasing the length of Y by one speech frame.

· Speech frame deletion: a speech frame in Y is deleted decreasing the length of Y by one speech frame.

Such a technique identifies the minimum distance between the reference sequence and the test sequence and the resulting information can be used for determination of the performance in terms of overall frame delay and number of speech frame deleted or speech frame inserted by the Jitter Buffer Management under test.

3.1 Distance computation

The distance metric computation requires 4 main steps:

Step 1: Grid construction

The distance can be derived forming a two-dimensional grid with the elements of the two sequences as points on the respective axes. The test sequence is at the abscissa and the reference sequence at the ordinate. Figure 5 is an example. 


[image: image4]
Each node of the grid is associated with a cost, which is an appropriately defined function measuring the “distance” between the respective elements of the reference and test sequences.

A path through the grid from an initial node (0,0) to a final one is an ordered set of nodes.

Each path is associated with an overall cost defined as the sum of all node costs included in the considered path.

The distance between the two speech frame sequences is defined as the minimum cost over all possible paths because it is the sequence that requires the minimum amount of basic operations needed to transform the test sequence in the reference sequence.

At the same time, the minimum cost path unravels the optimal pairwise correspondence between the elements of the two sequences.

Step 2: Node cost initialization. 
Initialize the cost of each node depending whether it associates the same speech frame in the two streams. Each point of the grid (node) marks a correspondence between the respective elements of the two sequences. For example node (3,2) maps the third element of the test sequence to the second element of the reference sequence.

[image: image5]
Step 3: Transition cost computation. 

Each node(i,j) can be reached only through three allowable predecessors: 
node(i-1,j), node(i,j-1) and node(i-1, j-1).

Update the cost for each node finding the optimal predecessor that is the predecessor with the minimum cost. Update the node cost with the sum of the cost of the optimal predecessor plus the cost of the node itself.

[image: image6]
Step 4: Optimal path searching.
Starting from the node(0,0) in the upper left corner, obtain the best path searching all possible combinations of paths. The distance is computed as the cost of the minimum cost path. The optimal node correspondence can then be unraveled by backtracking the optimal path.


[image: image7]

[image: image8]

[image: image9]
The same procedure can be described in pseudo-code.

Let C be an m×n grid of integers associated with a cost or “distance” and let

δ(·, ·) denote a delta function, having value 1 if the two elements (speech frames) match and 0 otherwise. The basic sequence-distance algorithm is then:

Algorithm (Node Cost and Transition cost computation)

1 Let x and y be, respectively, the JBM output data stream and the sender data stream, and build the cost grid matrix C(mxn), where m=length[x], n=length[y]

2 Assign the cost of the node (0,0): C[0,0] = 0

3 for i from 1 to m
4 
Assign: C[i,0] = i
5 end
6 for j from 1 to n
7 
Assign: C[0,j] = j

8 end
9 for i from 1 to m
10 for j from 1 to n

11 
C[i,j]=min(C[i-1,j], C[i,j-1], C[i-1,j-1]) + 1 - δ(x[i],y[j])

     insertion |deletion | no change/exchange 

12  end
13 end

14 C is the cost grid matrix used for optimal path search

The core of this algorithm (line11) ﬁnds the minimum cost in each entry of C, column by column. The algorithm is thus greedy in that each column of the distance or cost grid is ﬁlled using merely the costs in the previous column.

Algorithm (Optimal path searching)

1 Let (m,n) be the final node of the optimal path

2 Let (i,j) = argmin(C[m-1,n], C[m,n-1], C[m-1,n-1]) be a node of the optimal path

3 while (i,j) not equal to (0,0)

4 
(k,s) = argmin(C[i-1,j], C[i,j-1], C[i-1,j-1])

5 
Assign (i,j) = (k,s)
6 
Let (i,j) be a node of the optimal path
7 end

3.2 JBM performance scores

In order to map the distance of the optimal path to the JBM performance score it has to be analyzed the topology of the optimal path.

Only three possible transitions can occur in the optimal paths:

Diagonal transitions: the meaning of diagonal transition is that the test and reference sequence are matching. The cost of the transition is zero.

Horizontal transitions: the meaning of horizontal transitions is that a delay occurred between the reference and the test sequence (one speech frame insertion). Thus, they add to the cost, because they imply local mismatch.

Vertical transitions: the meaning of vertical transitions is that they attempt alignment of the two sequences by deleting some speech frames. They add to the cost too.

The instantaneous overall delay is related to the amount of speech frames inserted or removed in test sequence. So the Cumulative Distribution Function (CDF) is derived as percentage of speech frames having less than a certain instantaneous overall delay value at the JBM output.

CDF(x) = (% amount of frames having instantaneous overall delay ≤ x)
Since the ideal reference sequence belongs to the diagonal path, we found that the distance between the test sequence and the reference sequence is exactly the horizontal distance between the optimal path and the diagonal.

Instantaneous overall delay =  

= is computed as the horizontal distance between the optimal path and the diagonal at a certain output frame node, added to the initial waiting time and to the channel delay of the first transmitted packet.

The Jitter Loss Rate can be derived calculating the total amount of basic operations required to transform the test sequence in the reference sequence, because the basic operations were defined as frame insertions or frame deletions.

Number of jitter-induced concealment operations or Jitter Loss Rate = NH + NV - NL
where: 

NH= Number of horizontal transitions involving active speech frames
NV = Number of vertical transitions involving active speech frames
NL = Number of frames lost in the link

[image: image10.bmp]
Optimal path cost = 1



2



3



3



3



4



1



2



2



2



3



2



1



1

































































































1



0



Optimal path cost = 1



1



2



3



4



2



1



2



3



2



1



2



21



1



1



3



2



1



JBM output data stream



0



1



2



4



5



1



2



3



4



5



Sender data stream



Figure 10: Example of optimal path searching: speech frame deletion



1



1



2



3



21



1



2



0



1



4



3



3



2



1



JBM output data stream



0



4



1



2



Empty



3



5



4



1



2



3



4



5



Sender data stream



Figure 9: Example of optimal path searching: speech frame insertion



Optimal path cost = 0



5



0



1



2



3



4



1



0



1



2



3



2



1



0



1



2



3



21



1



0



1



4



3



2



1



JBM output data stream



0



1



2



3



4



5



1



2



3



4



5



Sender data stream



Figure 8: Example of optimal path searching: perfect matching sequences



0



1



2



3



4



1



0



1



2



3



2



1



0



1



2



3



21



1



0



1



4



3



2



1



JBM output data stream



0



1



2



3



4



5



1



2



3



4



5



Sender data stream



Figure 7: Transition Cost computation



0



1



1



1



1



1



0



1



1



1



1



1



0



1



1



1



1



1



0



1



1



1



1



1



JBM output data stream



0



1



2



3



4



5



1



2



3



4



5



Sender data stream



Figure 6: Node cost initialization



0



0



0



0



0



0



0



0



0



0



0



0



0



0



0



0



0



0



0



0



0



0



0



0



JBM output data stream



0



1



2



3



4



5



1



2



3



4



5



Sender data stream



Figure 5: Cost grid construction



…



Time scaling applied when a Speech Onset arrives



Packet lost in the channel or discarded by JBM



JBM triggered concealed frame insertion



13



11



10



-12



9



8



6



5



4



0



3



2



1



11



10



9



5



5



4



Empty



3



2



JBM output stream



1



10



9



8



7



6



5



4



3



2



Conceptual reference stream



1





