
3GPP TSG SA4 MBS SWG AH#96 Telco
 S4-AHI765
22th Jan 2018
Source:
Expway
Title:
Discussion on the binary formats for MBMS IoT
Document for:
Discussion and agreement
Contact:
Cedric Thienot cedric.thienot@expway.com
1. Introduction
MBMS protocols, codecs and procedures often use XML as a format for exchanging metadata (e.g. FDT, service announcement). However, the use of XML stack can be costly for IoT devices, especially for low-end IoT profile. Binary data format may be more appropriate for IoT devices to exchange metadata. One can define a paritular binary format for each purpose (e.g. FDT, service announcement, reception report). However, it is desirable to have a common binary format for all procedures, formats in the context of MBMS IoT. This document discusses different binary data formats.
2. Solutions for binary data formats
2.1 Efficient Extensible Interchange (EXI)

Efficient Extensible Interchange (EXI) is a way for one system to send to another system a highly compressed sequence of parse events. The recipient can build data structures directly from the parse events without having to reconstitute a textual representation (such as a JSON file, an XML file, JavaScript, HTML and so forth) [1]. It was developed by W3C’s Efficient Extensible Interchange Working Group. EXI provides multiple benefits as follows (non exhaustive list):
· EXI provides better compression than other XML compression techniques, and can deliver compression ratios of up to 100 to 1 [2];
· Using EXI format reduces the verbosity of XML documents as well as the cost of parsing;
· When using EXI, XML parsers consume EXI directly. XML applications, such as XML Schema validators and XSLT processors, will process the EXI exactly as they've always processed XML, i.e., no changes to the XML applications are required and XML applications are completely unaware that the format of the data is binary, not text (Figure 2.1-2);
· EXI format specification does not make particular assumption about the platform architecture;
· EXI was designed to integrate well into the XML stack, neither duplicating nor requiring changes to functionality at other layers in the XML stack.
Figure 2.1-1 shows the diagram which uses EXI to exchange data between sender and receiver.
[image: image1.png]
Figure 2.1-1: Data exchange using EXI

Figure 2.2-2 shows the interaction between EXI, XML parser and XML application. The parser converts the EXI to an XML infoset and XML applications operate on the infoset. Thus, the applications are unaware that EXI is being used.

[image: image2.png]
Figure 2.1-2: Interaction between EXI, XML parser and XML application

2.2 Well-known binary formats

A number of binary formats for representing data are available such as ASN.1 [3], Thrift [4], Protobuf [5].

The Abstract Syntaxt Notation One (ASN.1) is a well-know binary format used in many applications, especially in telecommunications (3G, LTE). The notation describes data structures for representing, encoding, transmitting, and decoding data. Data structures transfer syntax can be encoded using different encoding rules, providing schema notation even for representing XML in binary form - XER (XML Encoding Rules). The standard ASN.1 encoding rules include:

· Distinguished Encoding Rules (DER)

· Basic Encoding Rules (BER)

· Canonical Encoding Rules (CER)

· XML Encoding Rules (XER)

· Canonical XML Encoding Rules (CXER)

· Extended XML Encoding Rules (E-XER)

· Packed Encoding Rules (PER, unaligned: UPER, canonical: CPER)

· Octet Encoding Rules (OER, canonical: COER)

· JSON Encoding Rules (JER)

· Generic String Encoding Rules (GSER)

According to [6], unaligned PER is commonly used in 3GPP cellular technologies such as UMTS (3G) or LTE (4G) for protocols like RANAP, NBAP or RRC.
Thrift is an interface definition language and binary communication protocol that is used to define and create services for numerous languages. Thrift is used as a remote procedure call (RPC) framework and was developed at Facebook. Although developed at Facebook, it is now an open source project in the Apache Software Foundation.

The Protocol Buffers (Protobuf) is a method of serializing structured data. It is useful in developing programs to communicate with each other over a wire or for storing data. Protobuf were initially developed at Google to address the problem of large number of requests and responses to/from the index server. This protocol uses binary encoding which makes serialized data more compact. The design goals for Protobuf emphasized simplicity and performance. In particular, it was designed to be smaller and faster than XML.
The authors in [7] show a comparison between these binary formats as in Table 2.2-1

	
	Binary formats

	
	ASN.1
	Thrift
	Protobuf

	Licence
	Open source
	Open source
	Open source

	Language compatibility
	Java, C++, C, Python...
	C++, Java, Python, PHP
	Java, C++, Python

	Parsing speed
	Fast
	Medium
	Fast

	Memory usage
	Low
	Medium
	Medium

	Debugging complexity
	High
	Low
	Medium

	Implementation
	Medium
	Medium
	Low

	Documentation
	Very good
	Less than good
	Very good

Table 2.2-1: Comparison of binary formats
NOTE: The implementation in Table 2.2-1 implies the implementation complexity. According to [7], ASN.1 demands external (third-party) tool for reading encoded message, and it is more complex to deploy. Protobuf has some built-in features, i.e. toString() method that returns human-readable representation of message.

2.3 Ad-hoc binary format

Besides the well-known binary formats presented in section 2.2 (ASN.1, Thrift, Protobuf), one can define a customized binary format for a given data structure requirement. Figure 2.3-1 shows an example of binary FDT format as presented in S4-171207 [9].

	Bits
	Number of Octets

	7
	6
	5
	4
	3
	2
	1
	0
	

	HET = 194
	1
	Header part

	FLUTE Version = 1
	FDT Instance ID
	1
	

	FDT Instance ID continue
	2
	

	Binary FDT Version = 1
	Expires
	Base-URL-1
	Base-URL-2
	FEC Information bit (NOTE 6)
	1 (NOTE 5)
	Binary FDT descriptor

	Length of FDT descriptor (NOTE 7)
	2
	

	Content-type (NOTE 1)
	1
	

	Length of Expires
	2
	

	Expires
	0-m
	

	Length of Base-URL-1
	2
	

	Base-URL-1
	0-m
	

	Length of Base-URL-2
	2
	

	Base-URL-2
	0-m
	

	FEC-OTI-FEC-Encoding-ID
	1
	

	FEC-OTI-Maximum-Source-Block-Length
	2 or 4
(NOTE 2)
	

	FEC-OTI-Encoding-Symbol-Length
	2
	

	Length of FEC-OTI-Scheme-Specific-Info
	2
	

	FEC-OTI-Scheme-Specific-Info
	0-m
	

	Number of files (NOTE 3)
	1
	

	Reserved bits for extension of FDT descriptor (NOTE 7)
	0-m
	

	Length of the Nth file (NOTE 4)
	2
	Binary FDT content

	Content Length
	Content Type
	Content MD5
	FEC-OTI-FEC-Encoding-ID
	FEC Information bit (NOTE 6)
	mbms2012:Alternate-Content-Location-1
	mbms2012:Alternate-Content-Location-2
	mbms2012:File-ETag
	1 (NOTE 5)
	

	Transport Object Identifier (TOI) of the Nth file
	2
	

	Length of Content-location of the Nth file
	2
	

	 Content-location of the Nth file
	0-m
	

	Length of Content-Length of the Nth file
	2
	

	Content-Length of the Nth file
	0-m
	

	Content-Type of the Nth file
	1
	

	Length of Content-MD5 of the Nth file
	2
	

	Content-MD5 of the Nth file
	0-m
	

	FEC-OTI-FEC-Encoding-ID of the Nth file
	1
	

	FEC-OTI-Maximum-Source-Block-Length of the Nth file
	2 or 4
(NOTE 2)
	

	FEC-OTI-Encoding-Symbol-Length of the Nth file
	2
	

	FEC-OTI-Max-Number-of-Encoding-Symbols of the Nth file
	2
	

	Length of FEC-OTI-Scheme-Specific-Info of the Nth file
	2
	

	FEC-OTI-Scheme-Specific-Info of the Nth file
	0-m
	

	Length of mbms2012:Alternate-Content-Location-1 of the Nth file
	2
	

	mbms2012:Alternate-Content-Location-1 of the Nth file
	0-m
	

	Length of mbms2012:Alternate-Content-Location-2 of the Nth file
	2
	

	mbms2012:Alternate-Content-Location-2 of the Nth file
	0-m
	

	Length of mbms2012:File-ETag of the Nth file
	2
	

	mbms2012:File-ETag
	0-m
	

	Reserved bits for extension of the Nth file (NOTE 4)
	0-m
	

Figure 2.3-1: Example of binary FDT Instance format

NOTE 1: Content-type of 8 bits could be suffisant for IoT applications

NOTE 2: 2 octets for FEC Encoding IDs 0, 128, and 130; 4 octets for FEC Encoding ID 129.
NOTE 3: A maximum of 255 files delivered in a single FLUTE session could be suffisant since multiple FLUTE sessions are possible

NOTE 4: If the length value of the Nth file in the binary FDT is higher than the actual length, the reserved bit for extension are present. The content and values of the extension fiel are FFS

NOTE 5: A list of flags indicates whether the element appears in the FDT or Nth file. The value ‘0’ indicates that the flag is not appeared. The corresponding length and content fields of this flag are not appeared in the binary FDT. The value ‘1’ indicates that the flag is present. The order of the flag content follows the order in the list of flags. For the elements which have a specific length such as FEC related information, there is no length field

NOTE 6: The FEC Information bit is set to ‘0’ if compact no-code FEc is used. Otherwise this flag is set to ‘1’, the corresponding fields (FEC-OTI-Maximum-Source-Block-Length, FEC-OTI-Encoding-Symbol-Length, Length of FEC-OTI-Scheme-Specific-Info, FEC-OTI-Scheme-Specific-Info) related to FEC are present

NOTE 7: If the value of the length of FDT descriptor is higher than the actual length, the reserved bits for extension are present. The content and values of extension field are FFS

2.4 Key-Length-Value (KLV)

Section 2.3 presents the ad-hoc binary format where each data representation requires a customized binary format. Another possible solution is to use a special Key-Length-Value for all formats and procedures in MBMS IoT. In this KLV format, each data type is associated to a key value while the Length field indicates the actual length of the Value field. For instance, one can define up to 255 keys for MBMS IoT as shown in Table 2.4-1.
	Key
	Data type
	Length
	Value

	1
	Content-Location
	2
	

	2
	Content-Type
	1
	

	3
	mbms2012:File-ETag
	2
	

	…
	
	
	

	255
	
	
	

Table 2.4-1: Example table for KLV format
This KLV solution can be seen as a subset of ASN.1 solution using BER, PER or OER encoding rules.
3. Discussion on the pros and cons of binary formats
3.1 General considerations
According to [12], there are important differences to consider when comparing different data representation schemes. Some of the most relevant are,
· how are optional fields within messages handled, i.e., how is a field’s presence or absence represented,

· possibility of future backward compatibility when extending a message, i.e., adding of new mandatory or optional data fields,

· byte alignment,

· providing the functionality of data compression, for example variable length representation of integers.
Table 3.1-1 show the properties of different schemes from the general considerations [12]. The properties of binary, ASN.1 UPER, Protobuf and EXI are extracted from [12].
	
	ASN.1 UPER
	Protobuf
	EXI
	KLV
	Ad-hoc binary format

	Presence of optional fields
	Encoded
	Encoded
	Encoded
	Not encoded
	Encoded (NOTE 4)

	Extendability
	No (NOTE 1)
	Yes
	Yes
	Yes (NOTE 3)
	Yes (NOTE 5)

	Byte alignment (NOTE 6)
	No (NOTE 2)
	Yes
	No
	Yes
	No

	Compression
	Yes
	Yes (byte blocks)
	Yes (byte blocks)
	Yes
	Yes

Table 3.1-1: Overview of basic properties for different binary schemes
NOTE 1: Other ASN.1 encoding rules (e.g. BER) satisfy this property.
NOTE 2: The aligned PER encoding rule satisfies this property.
NOTE 3: The extendability of KLV format is limited to the pre-defined maxinum number of keys (e.g. 256 keys if 8 bits are used).
NOTE 4: Optional fields are presented by a list of flags.

NOTE 5: If reserved bits for extension are used.
NOTE 6: Byte alignment indicates that the fields are aligned to 8-bit octet boundaries by inserting padding bits.
3.2 Performance comparison
According to the evaluation performed by W3C [10], EXI shows better compactness compared to both XML and ASN.1 (Figure 3.2-1). However, the comparison between EXI and ASN.1 in terms of processing efficiency is not shown in this evaluation. In [11], processing efficiency is shown for both encoding and decoding (Table 3.2-1). ASN.1 shows better processing efficiency in the settings. The better compactness is also confirmed in [11] for EXI compared to ASN.1.
[image: image3.png]
Figure 3.2-1: EXI compactness compared to ASN.1 PER

	
	Encode
	Decode

	Format
	TPS
	Ratio
	TPS
	Ratio

	XML
	15858
	1
	9216
	1

	EXI
	185029
	x11.7
	277409
	x30.0

	ASN.1
	310862
	x19.6
	318419
	x34.6

Table 3.2-1: Comparison in terms of processing efficiency between XML, ASN.1 and EXI

NOTE: TPS stands for transactions per second.
In [12], the evaluation between Protobuf, EXI and ASN.1 is performed in the context of wireless Car-to-X communication. The performance metrics considered in the evaluations are computation time, memory footprint on computation and encoded data length.The following conclusions are drawn from the evaluation in [12]:
· ASN.1 outperforms Protobuf and EXI in terms of required encoding delay and runtime.
· EXI showed to be the most expensive in terms of memory footprint.
· In terms of encoding length for the cases of CAM (Cooperative Awareness Message) and DENM (Decentralized Environmental Notification Message) messages ASN.1 UPER encoding performs better compared to EXI and Protobuf.
· In terms of runtime, binary encoding performs significantly better than ASN.1 in all studied cases (Figure 3.2-3).
[image: image4.png]
Figure 3.2-3: Encoding (left) and decoding (right) runtime performance of ETSI ITS CAM, DENM and security envelope encoding on an Intel Core i7 processor [12]
NOTE 1: Sec. 1w/o indicates security profile 1 for CAM message without certificate. Sec. 1w indicates security profile 1 for CAM message with certificate. Sec. 2 indicates security profile 2 for DENM message. Sec. 3 indicate security profile 3 for generic message.
NOTE 2: The binary format is specialized for CAM and DENM messages.
4. Conclusions
The following conclusions are drawn from the performance comparison in section 3:

· Binary data formats (e.g. EXI, ASN.1) significantly outperform the XML data representaion in terms of both compactness, encoding/decoding processing efficiency and memory usage.

· ASN.1 is better than EXI in terms of processing efficiency and memory footprint while EXI is better than ASN.1 in terms of compactness.

· Binary encoding performs significantly better than ASN.1 and EXI in terms of run time.

5. References
[1]
https://www.w3.org/XML/EXI/
[2]
http://www.xfront.com/EXI/EXI.zip

[3]
https://www.itu.int/en/ITU-T/asn1/Pages/asn1_project.aspx

[4]
https://thrift.apache.org/
[5]
https://github.com/google/protobuf

[6]
http://www.oss.com/asn1/resources/asn1-made-simple/encoding-rules.html
[7]
N. Gligorić, I. Dejanović and S. Krčo, "Performance evaluation of compact binary XML representation for constrained devices," 2011 International Conference on Distributed Computing in Sensor Systems and Workshops (DCOSS), Barcelona, 2011, pp. 1-5.
[8]
3GPP TS 36.331: “Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification”.

[9]
S4-171207 Pseudo-Binary FDT for FS_MBMS_IoT (http://www.3gpp.org/ftp/TSG_SA/WG4_CODEC/TSGS4_96/Docs/S4-171207.zip)
[10] https://www.w3.org/TR/2009/WD-exi-evaluation-20090407/
[11] https://www.w3.org/WoT/IG/wiki/images/4/44/2016-04_EXI_for_WoT-1.pdf
[12] Sebastian Bittl, Arturo A. Gonzalez, Michael Spahn, and Wolf A. Heidrich, “Performance Comparison of Data Serialization Schemes for ETSI ITS Car-to-X Communication Systems”, International Journal on Advances in Telecommunications, vol 8 no 1 & 2, 2015.
