
3GPP TSG SA4 MBS SWG AH#93 Telco
 S4-AHI761
18th Dec 2017

Source:
Expway
Title:
Discussion on the binary formats for MBMS IoT
Document for:
Discussion and agreement
Contact:
Cedric Thienot cedric.thienot@expway.com
1. Introduction
MBMS protocols, codecs and procedures often use XML as a format for exchanging metadata (e.g. FDT, service announcement). However, the use of XML stack can be costly for IoT devices, especially for low-end IoT profile. Binary data format may be more appropriate for IoT devices to exchange metadata. One can define a paritular binary format for each purpose (e.g. FDT, service announcement, reception report). However, it is desirable to have a common binary format for all procedures, formats in the context of MBMS IoT. This document discusses different binary data formats.
2. Solutions for binary data formats
2.1 Efficient XML exchange (EXI)

EXI [1] is a binary XML format for data exchange between entities or for data compression. It was developed by WC3’s Efficient Extensible Interchange Working Group. EXI provides multiple benefits as follows (non exhaustive list):
· EXI provides better compression than other XML compression techniques, and can deliver compression ratios of up to 100 to 1 [2];
· Using EXI format reduces the verbosity of XML documents as well as the cost of parsing;
· When using EXI, XML parsers consume EXI directly. XML applications, such as XML Schema validators and XSLT processors, will process the EXI exactly as they've always processed XML, i.e., no changes to the XML applications are required and XML applications are completely unaware that the format of the data is binary, not text;
· EXI format specification does not make particular assumption about the platform architecture;
· EXI was designed to integrate well into the XML stack, neither duplicating nor requiring changes to functionality at other layers in the XML stack.
Figure 2.1-1 shows the diagram which uses EXI to exchange data between sender and receiver.
[image: image1.png]
Figure 2.1-1: Data exchange using EXI 

Although having good performance, EXI requires XML stack which may still be costly for IoT devices.

2.2 Well-known binary formats

A number of binary formats for representing data are available such as ASN.1 [3], Thrift [4], Protobuf [5]. 

The Abstract Syntaxt Notation One (ASN.1) is a well-know binary format used in many applications, especially in telecommunications (3G, LTE). The notation describes data structures for representing, encoding, transmitting, and decoding data. Data structures transfer syntax can be encoded using different encoding rules, providing schema notation even for representing XML in binary form - XER (XML Encoding Rules). The standard ASN.1 encoding rules include:

· Distinguished Encoding Rules (DER)

· Basic Encoding Rules (BER)

· Canonical Encoding Rules (CER)

· XML Encoding Rules (XER)

· Canonical XML Encoding Rules (CXER)

· Extended XML Encoding Rules (E-XER)

· Packed Encoding Rules (PER, unaligned: UPER, canonical: CPER)

· Octet Encoding Rules (OER, canonical: COER)

· JSON Encoding Rules (JER)

· Generic String Encoding Rules (GSER)

According to [6], unaligned PER is commonly used in 3GPP cellular technologies such as UMTS (3G) or LTE (4G) for protocols like RANAP, NBAP or RRC.
Thrift is an interface definition language and binary communication protocol that is used to define and create services for numerous languages. Thrift is used as a remote procedure call (RPC) framework and was developed at Facebook. Although developed at Facebook, it is now an open source project in the Apache Software Foundation.

The Protocol Buffers (Protobuf) is a method of serializing structured data. It is useful in developing programs to communicate with each other over a wire or for storing data. Protobuf were initially developed at Google to address the problem of large number of requests and responses to/from the index server. This protocol uses binary encoding which makes serialized data more compact. The design goals for Protobuf emphasized simplicity and performance. In particular, it was designed to be smaller and faster than XML.
The authors in [7] show a comparison between these binary formats as in Table 2.2-1

	
	Binary formats

	
	ASN.1
	Thrift
	Protobuf

	Licence
	Open source
	Open source
	Open source

	Language compatibility
	Java, C++, C, Python...
	C++, Java, Python, PHP
	Java, C++, Python

	Parsing speed
	Fast
	Medium
	Fast

	Memory usage
	Low
	Medium
	Medium

	Debugging complexity
	High
	Low
	Medium

	Implementation
	Medium
	Medium
	Low

	Documentation
	Very good
	Less than good
	Very good


Table 2.2-1: Comparison of binary formats 
ASN.1 is being used in LTE devices [8]. Thus, ASN.1 seems to be a straightforward choice for IoT devices among the three listed formats.
2.3 Ad-hoc binary format

Besides the well-known binary formats presented in section 2.2 (ASN.1, Thrift, Protobuf), one can define a customized binary format for a given data structure requirement. Figure 2.3-1 shows an example of binary FDT format as presented in S4-171207 [9].

	Bits
	Number of Octets

	7
	6
	5
	4
	3
	2
	1
	0
	

	HET = 192
	1
	Header part

	FLUTE Version = 1
	FDT Instance ID
	1
	

	FDT Instance ID continue
	2
	

	Binary FDT Version = 1
	Expires
	Base-URL-1
	Base-URL-2
	FEC Information bit (NOTE 6)
	1 (NOTE 5)
	Binary FDT descriptor

	Length of FDT descriptor (NOTE 7)
	2
	

	Content-type (NOTE 1)
	1
	

	Length of Expires
	2
	

	Expires
	0-m
	

	Length of Base-URL-1
	2
	

	Base-URL-1
	0-m
	

	Length of Base-URL-2
	2
	

	Base-URL-2
	0-m
	

	FEC-OTI-FEC-Encoding-ID
	1
	

	FEC-OTI-Maximum-Source-Block-Length (NOTE 2)
	2
	

	FEC-OTI-Encoding-Symbol-Length (NOTE 2)
	2
	

	Length of FEC-OTI-Scheme-Specific-Info
	2
	

	FEC-OTI-Scheme-Specific-Info
	0-m
	

	Number of files (NOTE 3)
	1
	

	Reserved bits for extension of FDT descriptor (NOTE 7)
	0-m
	

	Length of the Nth file descriptor (NOTE 4)
	2
	Binary FDT content

	Content Length
	Content Type
	Content MD5
	FEC-OTI-FEC-Encoding-ID
	FEC Information bit (NOTE 6)
	mbms2012:Alternate-Content-Location-1
	mbms2012:Alternate-Content-Location-2
	mbms2012:File-ETag
	1 (NOTE 5)
	

	Transport Object Identifier (TOI) of the Nth file
	2
	

	Length of Content-location of the Nth file
	2
	

	 Content-location of the Nth file
	0-m
	

	Length of Content-Length of the Nth file
	2
	

	Content-Length of the Nth file
	0-m
	

	Content-Type of the Nth file
	1
	

	Length of Content-MD5 of the Nth file
	2
	

	Content-MD5 of the Nth file
	0-m
	

	FEC-OTI-FEC-Encoding-ID of the Nth file
	1
	

	FEC-OTI-Maximum-Source-Block-Length of the Nth file (NOTE 2)
	2
	

	FEC-OTI-Encoding-Symbol-Length of the Nth file
	2
	

	FEC-OTI-Max-Number-of-Encoding-Symbols of the Nth file (NOTE 2)
	2
	

	Length of FEC-OTI-Scheme-Specific-Info of the Nth file
	2
	

	FEC-OTI-Scheme-Specific-Info of the Nth file
	0-m
	

	Length of mbms2012:Alternate-Content-Location-1 of the Nth file
	2
	

	mbms2012:Alternate-Content-Location-1 of the Nth file
	0-m
	

	Length of mbms2012:Alternate-Content-Location-2 of the Nth file
	2
	

	mbms2012:Alternate-Content-Location-2 of the Nth file
	0-m
	

	Length of mbms2012:File-ETag of the Nth file
	2
	

	mbms2012:File-ETag
	0-m
	

	Reserved bits for extension of the Nth file (NOTE 4)
	0-m
	


Figure 2.3-1: Example of binary FDT Instance format 

NOTE 1: Content-type of 8 bits could be suffisant for IoT applications

NOTE 2: Apply to small block FEC

NOTE 3: A maximum of 255 files delivered in a single FLUTE session could be suffisant since multiple FLUTE sessions are possible

NOTE 4: If the value of descriptor length of the Nth file in the binary FDT is higher than the actual length, the reserved bit for extension are present. The content and values of the extension fiel are FFS

NOTE 5: A list of flags indicates whether the element appears in the FDT or Nth file descriptor. The value ‘0’ indicates that the flag is not appeared in the descriptor. The corresponding length and content fields of this flag are not appeared in the binary FDT. The value ‘1’ indicates that the flag is present in the descriptor. The order of the flag content follows the order in the list of flags. For the elements which have a specific length such as FEC related information, there is no length field

NOTE 6: The FEC Information bit is set to ‘0’ if compact no-code FEc is used. Otherwise this flag is set to ‘1’, the corresponding fields (FEC-OTI-Maximum-Source-Block-Length, FEC-OTI-Encoding-Symbol-Length, Length of FEC-OTI-Scheme-Specific-Info, FEC-OTI-Scheme-Specific-Info) related to FEC are present

NOTE 7: If the value of the length of FDT descriptor is higher than the actual length, the reserved bits for extension are present. The content and values of extension field are FFS

2.4 Key-Length-Value (KLV)

Section 2.3 presents the ad-hoc binary format where each data representation requires a customized binary format. Another possible solution is to use a special Key-Length-Value for all formats and procedures in MBMS IoT. In this KLV format, each data type is associated to a key value while the Length field indicates the actual length of the Value field. For instance, one can define up to 255 keys for MBMS IoT as shown in Table 2.4-1. 
	Key
	Data type
	Length
	Value

	1
	Content-Location
	2
	

	2
	Content-Type
	1
	

	3
	mbms2012:File-ETag
	2
	

	…
	
	
	

	255
	
	
	


Table 2.4-1: Example table for KLV format
This KLV solution can be seen as a subset of ASN.1 solution using BER, PER or OER encoding rules. 
3. Proposal

It is proposed to agree on one of listed solutions for common binary format required for MBMS IoT. Based on the agreement, the solutions for different procedures and formats will be proposed on the chosen format.
4. References
[1]
https://www.w3.org/XML/EXI/
[2]
http://www.xfront.com/EXI/EXI.zip 

[3]
https://www.itu.int/en/ITU-T/asn1/Pages/asn1_project.aspx 

[4]
https://thrift.apache.org/
[5]
https://github.com/google/protobuf 

[6]
http://www.oss.com/asn1/resources/asn1-made-simple/encoding-rules.html
[7]
N. Gligorić, I. Dejanović and S. Krčo, "Performance evaluation of compact binary XML representation for constrained devices," 2011 International Conference on Distributed Computing in Sensor Systems and Workshops (DCOSS), Barcelona, 2011, pp. 1-5.
[8]
3GPP TS 36.331: “Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification”.

[9]
S4-171207 Pseudo-Binary FDT for FS_MBMS_IoT (http://www.3gpp.org/ftp/TSG_SA/WG4_CODEC/TSGS4_96/Docs/S4-171207.zip)

