
Overview of Qualcomm 

eMBMS application APIs



 Rel-14 3GPP MBMS TRAPI work item

 TRAPI = Transport Protocol and API 

 Agreements

 Structure for API spec – new TS26 347

 Definition for APIs for handling MBMS defined service types

– File delivery application services

– DASH-over-MBMS Streaming application services

– RTP-over-MBMS Streaming application services

– Generic application services

 APIs will be described via platform-independent IDL

– Informative annexes will provide translations from IDL to platform-specific APIs (e.g., Java)

 Open issue

 Two API proposals are being considered

– Qualcomm proposal: service-type specific APIs

 Modern method of defining APIs where each service type is supported by definitions (e.g., object), functions and 

notifications that are service-type specific

 Cleaner approach for service-specific app development

– Alternative proposal: single API applicable to all types of service

 Cumbersome service-specific app development (e.g., unnecessary exposure of class inheritance, casting service object to 

specific service type)

3GPP TRAPI: Agreements and Open Issues



 MBMS-aware applications need to understand the requirements of offering different service types

 A file delivery app

– Provides the user with a view of files that can be received and those already available

– Enables the user to access file, e.g., play media files

 A DASH streaming app

– Provides the user with a view of streaming channels/episodes/events that are available for playback

– Enables the user to interact with a media player, e.g., to pause, rewind playback

 MBMS Client (MBMS middleware) support functionalities that are specific to each service type

 For file delivery services

– Collects files sent over MBMS according to file schedules even when the requesting app is not currently running

– Makes received files available to an app when file reception has completed, even after file repair

 For DASH streaming services

– Collects media segments and hosts them via an HTTP server

– Notifies apps of mobility conditions that may impact proper media playback, e.g., reception stalls due to service not being 

available in a current area

Motivation ServiceType-specific APIs (1/3)

MBMS API

MBMS-Aware

Application

SDK

MBMS 

Middleware

App

Middleware



 Having ServiceType specific APIs

 Aligns with the service types defined in 3GPP and the type user experience the app seeks to provide

– Apps in recent deployments are streaming apps and file delivery apps

 Simplifies app developers’ efforts targeting a specific ServiceType

– Service APIs can be made more intuitive to the type of service being supported

 A file delivery app would want to 

 Request that certain files be captured while it may not be running

 Request the list of files received while the app was not running

 A DASH streaming app would want to 

 Request the start of streaming so media playback can be started

 Request the switch (start new and stop old) channels in an efficient way (such that device capabilities are not 

exceeded)

Motivation ServiceType-specific APIs (2/3)

FD 

ServiceType

FD

App

DASHStream

ServiceType

DASH

App

RTP

App

Generic

ServiceType

HLS

App

HTML

App

SDK

FD 

Service

DASH

Service

Generic

Service

Apps

Middleware
RTP

Service

mimeTy

RTPStream

ServiceType



 Having ServiceType specific APIs

 Follows recent trends of publishing application specific APIs

– http://developer.android.com/reference/java/io/File.html

– http://developer.android.com/reference/android/media/MediaPlayer.html#Callbacks

 Extensibility: new service types, service-specific functions/notifications can be added as appropriate for a type of service and

as new use cases are identified

 SDK implementation can be modular to support resource constrained deployments

– Different SDKs can easily be re-factored to support ServiceType specific deployments of specialized devices (e.g., IOT)

 A compact ServiceType-specific SDK can be bundled with the application resulting in smaller memory footprint

Motivation ServiceType-specific APIs (3/3)

FD 

ServiceType

FD

App

DASHStream

ServiceType

DASH

App

RTP

App

Generic

ServiceType

HLS

App

HTML

App

SDK

FD 

Service

DASH

Service

Generic

Service

Apps

Middleware
RTP

Service

mimeTy

RTPStream

ServiceType

http://developer.android.com/reference/android/media/MediaPlayer.html#Callbacks
http://developer.android.com/reference/android/media/MediaPlayer.html#Callbacks


 registerFdApp/deregisterFdApp

 Identifies a file delivery app (app ID) and its user (e.g., via email address) to the MBMS client

 Defines a validityTime on how long to collect files while the app is not running

– FD applications are typically not required to be running to enable file receptions, which progress “in the background”

 Register call back functions

 fileAlvailable() – notifies app of newly received file for a service and where the fil is stored on the device

 fileListAvailable () – notifies an app that has just re-registered on files captured for the app while it was not running.

 fileDownloadFailure() – notifies an app of failure to download a file for a service

 insufficientStorage() – signals an app to alert the user to make storage space for receive files

 fileDownloadStateUpdate() – indicates availability of download state info for files pending reception.

 fdServiceListUpdate() – Alerts app of service definition updates (e.g., new file list info)

 setFdStorageLocation – the app defiles location/directory where received files are to be stored

 getFdServices – the app retrieves info on available FD services

 serviceName, serviceClass, serviceID, serviceAvailability, fileURIs, serviceStart/End

 getFdActiveServices – the app retrieves info on services for which the app has outstanding capture requests

 startFdCapture – the app identifies file(s) to be captured on a specific FD service

 stopFdCapture – the app aborts capture of previously identified file(s) on a FD service

 getFdAvailableFileList – the app retrieves info on files receive while the app was not running

 getFdDownloadStateList – the app retrieves info on download state on files being captured

Sample file delivery application service APIs



 registerStreamingApp/deregisterStreamingApp

 Identifies a streaming app (app ID) and its user (e.g., via email address) to the MBMS client 

 Register call back functions

– StreamingServiceStarted() – notifies app that MBMS transport receive is ready and that playback can start

– StreamingServiceStopped() – notifies app that reception has stopped (e.g., end of session reached) and that playback can 

stop

– StreamingServiceStalled() – notifies app that the service is no longer available via broadcast, possibly momentarily, the app 

may initiate reception via unicast.

– streamingServiceListUpdate() – Alerts app of service definition updates (e.g., new streaming service defined)

 getStreamingServices – the app retrieves info on available streaming services

 serviceName, serviceClass, serviceID, serviceAvailability, mpdURL, serviceStart/End

 startStreamingService – the app signals to the MBMS client to start reception for the streaming service 

identified 

 stopStreamingService – the app signals to the MBMS client to stop reception for the streaming service 

identified 

 switchStreamingService – the app signals to the MBMS client to stop reception for one streaming service and 

to start reception for another streaming service identified (for efficient channel switching that avoids device 

resource limitations)

Sample DASH-over-MBMS streaming application services APIs



 Conclusion

 QC MBMS application API proposal 

– More natural for an app developer to build applications to handle service-specific

– Extensive success with apps developers quickly developing apps with the QC APIs

 Proposal

 Accept the Qualcomm API proposal as the baseline for the future work

Conclusions and Proposed Next Steps for 3GPP


