Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG-SA4 MBS SWG AHI#55 Telco
S4-AHI580
7th June 2016
Agenda item:
4
Source:
Ericsson LM
Title:
Handling TLS protected traffic with MPEG SAND for MOOD operations
Document for
Discussion and Agreement
1 Introduction

This is an update of S4-AHI559. Changes are marked with change bars.
3GPP SA4 is currently studying MPEG SAND in context of the SAND study item. The TRAPI work item also includes some SAND aspects since TR 26.852 contains some “potential solutions”. MPEG SAND is getting mature, but is not completed yet. Usage of the SAND WebSocket Channel for Unicast<->Broadcast switching has not been considered until now.
The current MBMS MOOD and service continuity architecture is based on HTTP redirects and may benefit of new SAND capabilities. However, use of HTTPS and TLS is getting wider adopted by many content providers and in-band proxies cannot simplify add, modify or remove HTTP headers anymore. Some app environments like browsers prohibit the usage of mixed, secure and insecure origins. For some browser APIs, the exclusive usage of secured connections is required. Thus, any modification of the MBMS MOOD architecture should consider the increase usage of HTTPS for unicast content. SAND may provide solutions in particular for TLS protected unicast traffic.

One intention of this Tdoc is to raise the issue of handling HTTPS protected unicast traffic in context of MOOD and Service Continuity. MPEG SAND may offer a solution to the identified issue.
Another intention of this Tdoc is to address the usage of a SAND WebSocket Channel for MOOD and unicast<->broadcast switching. It should be studied, whether a realization is possible with the present SAND specification.
2 MOOD for handling TLS protected unicast traffic
2.1 Description of the Release 12 solution for MOOD
The current MBMS MOOD and service continuity architecture assumes an HTTP proxy inside of the MBMS client (i.e. device proxy) in order to steer the DASH player towards unicast representations or broadcast representations. Note, a network HTTP proxy may be required for some MOOD operation modes. The term “MOOD” refers to unicast <-> broadcast switching due to the result of counting. The term “service continuity” refers to unicast<->broadcast switching due to mobility related events (i.e. no counting required), like the UE enters the broadcast area. Note, MOOD related counting may not be activated for a simple “service continuity” case.

The task of the MOOD device proxy (see figure below) in the present MOOD architecture is to direct HTTP requests from the DASH Player to either the remote HTTP server (unicast) or serve the segment from a local
MBMS cache. Alternatively, the proxy may request segments from a local server.
The architecture below is derived from the MOOD TR 26.849 (Figure 7). A CDN Edge is implementing the Content Server / PSS Server. The unicast traffic may be routed through an HTTP Proxy of the BM-SC, when MOOD headers are added to the HTTP traffic. The BMSC HTTP Proxy is not depicted here. Any unicast HTTP traffic is routed through the P-GW and other 3GPP nodes (not depicted) to the client.
[image: image1.emf]Media

Origin

API Calls

Segments (ABR)

Segments (SBR)

SACH

App

MPD

SBR Segments

Dash

Player

MBMS Client

CDN

Edge

(PSS Server)

BM-SC

MOOD

Proxy

APIs

ABR Segments

Cache /

Server

Unicast

consumption

MBMS

consumption

In some cases, the MBMS Client sends consumption reports to the BM-SC. The intention is that the BM-SC can monitor the popularity of the service and activate or de-active broadcast in some areas. MOOD headers can be used to monitor the popularity of unicast consumption, but not for broadcast consumption.
For unicast <-> Broadcast switching, the present MOOD proxy uses HTTP redirect, thus, the MOOD proxy must see the HTTP requests in clear-text.

The usage of transport protection (HTTPS) is more often used for unicast IP communication in order to secure privacy and also to secure control of the delivery pipe. The intention of using HTTPS is manifold:
· In case the content provider has no relation with the network provider (aka no business agreement in place), TLS is used to secure end-user privacy and to ensure authorized-only entities on the path. Here, neither a MOOD device nor MOOD network proxy may add MOOD headers or inspect the HTTP traffic due to counting.
· In case the content provider has a relation with the network provider (aka business agreement in place), TLS may still be required due to the App environment. For example, browsers start prohibiting the combined usage of secured and unsecured connections (also called mixed content). Some browser APIs are only accessible when secured connections are used. Here, the MOOD network proxy may have the TLS certificate of the content provider for that session (due to business agreement) and is therefore able to “see” the HTTP transactions and process the MOOD headers. However, it is unlikely that the MOOD device proxy has the TLS certificate of the content provider in order to add MOOD headers or to steer the DASH player (uc <-> bc switching).
In case of TLS protected HTTP Unicast traffic (it is assumed that the MOOD device proxy has NOT TLS domain certificates to intercept the HTTP messages), then

· any MOOD Proxy cannot steer the HTTP requests between unicast & broadcast anymore, since the MOOD proxy only forwards encrypted unicast traffic
· the MOOD Proxy cannot add MOOD headers for counting since the MOOD proxy cannot add or modify the HTTP headers anymore. However, unicast consumption reporting can be used to convey consumption information, when needed, since the information is send separately from the payload.
· We may subdivide two cases for the study:

· 1: The usage of TLS is required on all connections, independently whether unicast or broadcast is used.

· 2: The usage of TLS is only required per access, i.e. all connections on unicast use HTTPS, while all broadcast received content use regular HTTP.

MPEG SAND can provide some solution to avoid the need for a local MOOD proxy on the device. Instead, a separate communication channel between the MBMS Client and the DASH Player could be established. The SAND WebSocket communication channel can be secured using TLS (although belonging to a different domain), so that all connections are secured. Note, the usage of the SAND WebSocket Channel is independent from the usage of HTTPS. There may be other reasons that a solution like the WebSocket Channel is preferred.
2.2 Overview of a SAND WebSocket solution for MOOD
2.2.1 Architecture

MPEG SAND enables a new procedure for Unicast <-> Broadcast switching using a MOOD DANEs. MPEG SAND defines two communication channels for PER messages to the client:

· Through addition of HTTP Headers (like DaneResourceSatus) in Segment or MPD responses, i.e. inband with the MPD or segment stream.

· Through a WebSocket communication channel, i.e. out-of-band of the MPD or segment stream using a separate channel.

The WebSocket communication channel is established through an HTTP request to the server, which contains a specific HTTP header in the request (i.e. ‘Upgrade: websocket’ header). The server grants the request and can use the established TCP connection in both directions. MPEG SAND has defined a message framing format for the WebSocket communication channel.

Through SAND, the DANE can steer the DASH Player into one way or another. It can make certain resources of the manifest un-available so that the client only uses a subset. It can also steer the DASH Player to a different MPD location. It should be studied, whether the DASH Player can handle MPDs with slight variations.

[image: image2.emf]Media

Origin

MPD

ABR Segments

SAND Channel

(PER Messages)

Segments (ABR)

Segments (SBR)

SACH

App

MPD Url

Unicast

consumption

MBMS

consumption

SBR Segments

Dash

Player

MOOD

DANE

MBMS Client

Local Server

CDN

Edge

BM-SC

SAND allows signaling of MPD expiration (i.e. using the MPDValidityEndTime message type (number 14)) in a PER message and suggesting the DASH player to fetch the MPD from a different MPD location (i.e. through the element mpdUrl). When the MPD does not contain a baseUrl element, thus, when all segments Urls are relative to the MPD Url, then the DASH-Player starts fetching segments from a new location.
Consequently, the MBMS Client does not need to implement a proxy to redirect the different HTTP requests from unicast to broadcast or vice versa. This again allows usage of HTTPS for unicast traffic.

Consumption reporting information can be reported separately from the HTTP payload to the infrastructure using Consumption Reporting.

2.2.2 Procedures
A simplified procedure is depicted in the follow-up. Details depend on the progress of the TRAPI Work-Item.

[image: image3.wmf]A

p

p

D

A

S

H

P

l

a

y

e

r

M

B

M

S

C

l

i

e

n

t

C

D

N

B

M

-

S

C

1

:

S

t

a

r

t

S

t

r

e

a

m

i

n

g

S

e

s

s

i

o

n

2

:

G

e

t

M

P

D

U

r

l

3

:

P

l

a

y

M

P

D

U

r

l

4

:

E

s

t

a

b

l

i

s

h

S

A

N

D

C

h

a

n

n

e

l

5

:

C

h

a

n

g

e

M

P

D

l

o

c

a

t

i

o

n

(

P

E

R

M

P

D

V

a

l

i

d

i

t

y

E

n

d

T

i

m

e

)

6

:

E

s

t

a

b

l

i

s

h

S

t

r

e

a

m

i

n

g

S

e

s

s

i

o

n

W

h

e

n

B

r

o

a

d

c

a

s

t

b

e

c

o

m

e

s

a

v

a

i

l

a

b

l

e

7

:

C

h

a

n

g

e

M

P

D

l

o

c

a

t

i

o

n

(

P

E

R

M

P

D

V

a

l

i

d

i

t

y

E

n

d

T

i

m

e

)

8

:

E

s

t

a

b

l

i

s

h

S

t

r

e

a

m

i

n

g

S

e

s

s

i

o

n

W

h

e

n

B

r

o

a

d

c

a

s

t

b

e

c

o

m

e

s

u

n

a

v

a

i

l

a

b

l

e

h

t

t

p

:

/

/

m

s

c

-

g

e

n

e

r

a

t

o

r

.

s

o

u

r

c

e

f

o

r

g

e

.

n

e

t

v

4

.

6

.

2

The steps below focus on the control transactions and does not show the actual segment flow. It should be notes, that segments from the same DASH segmenter (aka PSS server) are fed into the CDN and also made available to the BM-SC.

1. The App triggers the start of a streaming sessions using the MBMS APIs as defined in TRAPI TR[1]

2. When the stream is started, the App gets the MPD Url from the MBMS Client (cf. [1])

3. The App launches the Dash Player and passes the MPD Url to the DASH Player

4. The DASH Player establishes the SAND WebSocket communication channel to the MBMS Client.

When Broadcast becomes available:

5. The MBMS Client triggers the change of the MPD location using the SAND MPDValidityEndTime in combination with the MPDUrl parameter. The MPDUrl contains a localhost URL. The MBMS Client may pass additional SAND messages to the client, e.g. DaneResourceStatus.

6. The DASH Player starts fetching the MPD Url from the MBMS Client (local server). The MPD does not contain any baseUrl statement so also the segments are fetched from the local server

When Broadcast becomes unavailable

7. The MBMS Client triggers the change of the MPD location using the SAND MPDValidityEndTime in combination with the MPDUrl parameter. The MPDUrl contains a CDN URL as conveyed in Service Announcement. The MBMS Client may pass additional SAND messages to the client, e.g. DaneResourceStatus.

8. The DASH Player starts fetching the MPD Url from the CDN Location.
	

3 Summary and Proposal

The present document raises the issue of handling TLS protect unicast traffic for MOOD. Usage of TLS for unicast HTTP traffic is getting more and more common. Support for TLS in case of MBMS broadcast reception (e.g. between the MBMS Client and the DASH Player / generic Application) can be studied separately from unicast.
It is proposed to include Section 2 into the Technical Report 26.957 on SAND [2].
4 References
[1]
TS 26.852 MBMS Extensions and profiling
[2]
TR 26.957 Study on Server And Network-assisted Dynamic Adaptive Streaming over HTTP (DASH) (SAND) for 3GPP multimedia services[image: image4.png]

- 3/6 -

_1521985907.bin

