Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG-SA4 MBS Adhoc
S4-AHI299
24 July, 2012
update to S4-AHI297
Telco
Agenda item:
5
Source:
Qualcomm Incorporated

Title:
Test Plan for Device-based FEC Evaluation
Document for
Proposal and Approval

1 Introduction

From the evaluation of the self-verified results it is obvious that several candidates may provide an improvement to the existing MBMS FEC, especially in terms of transmission and receive overhead. The main open issues are the performance in a realistic service and end device environments, especially the performance on a mobile device. Indicative numbers have been provided with the submission, but for final selection of a single FEC more detailed numbers are necessary.
This document provides a test plan for testing device-based evaluation.
This document takes into account the initial considerations from S4-120877 and the agreements during the past calls.

It is proposed to use this test plan for rigorous device-based FEC evaluation. The test plan may still be modified in case open issues are detected.
For all definitions and acronyms here that are not explicitly made in this document, please see TS 26.346 (e.g. for OTI, FDT, FLUTE).
This document provides updates to S4-AHI293 as agreed during the telco on July 24th.
2 Test Cases
The following use cases are considered for performing (for details refer to TR26.247 v1.0.0).
LTE Download Delivery
Note that the file size shall be as follows
· Clip: 3 * 1024 * 1024 Byte = 3145728 Bytes,

· SD: 128 * 1024 * 1024 Byte = 134217728 Bytes,
· HD: 1800 * 1024 * 1024 Byte = 1887436800 Bytes.
	Test Case
	Error conditions
	Bitrate

kbit/s
	File
	 File size

(in bytes)
	Repetition

	LD60
	Markov, 3 km/h, 20%
	1065.6
	HD
	1887436800
	1

	LD108
	Markov, 120 km/h, 5%
	1065.6
	Clip
	3145728
	20

	LD109
	
	1065.6
	SD
	134217728
	5

	LD110
	
	1065.6
	HD
	1887436800
	1

	LD118
	Markov, 120 km/h, 20%
	1065.6
	Clip
	3145728
	20

	LD119
	
	1065.6
	SD
	134217728
	5

DASH-based Streaming Delivery over LTE
	Test Case
	Error conditions
	Segment
Duration
in seconds
	Bearer
Bitrate

kbit/s
	Duration

in seconds

	LS21
	Markov, 3 km/h, 20%
	1
	1065.6
	1800

	LS49
	
	2
	1065.6
	1800

	LS24
	
	4
	1065.6
	1800

	LS33
	Markov, 120 km/h, 5%
	1
	1065.6
	1800

	LS50
	
	2
	1065.6
	1800

	LS36
	
	4
	1065.6
	1800

	LS45
	Markov, 120 km/h, 20%
	1
	1065.6
	1800

	LS51
	
	2
	1065.6
	1800

	LS48
	
	4
	1065.6
	1800

3 Test Conditions & Test Procedure

Overview Test Platform and Operation Conditions
Figure 1 shows the considered test platform that is to be used.
[image: image1.png]peap k
Error

Generator
Test Streams
FLUTE + FEC
Decoder
- PCAP file - Configurations - Decoding Success

- Encoding Parameters - Metrics Logs

Figure 1 – Test Platform
Figure 1 may suggest that data would be transmitted from laptop to device and experience errors over the connection. Despite this may be considered conceptually, in practice a local procedure on the PC is applied to go from the original PCAP file to an errored PCAP file.
Prior knowledge of the error traces shall not be used by the FEC encoder or decoder.
Download Delivery
Summary Test Cases
The following test case parameters are specified:

· FS is the file size in bytes

· T’ is the FEC payload size.
· T is the symbol size. Typically T = T’ unless there are multiple symbols per packet
· Kt is the total number of source symbols, i.e., Kt = ceil(FS/T)
· Z is the total number of source blocks

· O is the transmission overhead in percent according to the table provided by the proponents

· Nt is the resulting number of total symbols defined as Kt*(1+O/100)

· The code specific FEC-OTI (see TS26.346, section 7.2.9), e.g. the partitioning and sub-blocking parameters

· SeSt is the sending strategy with IL = Interleaved, n/a not applicable and SQ sequential
· Sequential = send all packets for the first source block, followed by all packets for the second source block, followed by all symbols for the third source block, etc.

· Interleaved = send a first packet for each of the Z source blocks, followed by a second packet for each of the Z source blocks, followed by a third packet for each of the Z source blocks, etc.

· Unless otherwise noted the symbols within each source block are assumed sent in order of increasing ESI-value starting with the first source symbol. If any other sending order for symbols within each source block is utilized it should be explicitly noted under Notes.
It is further expected that of the Z source blocks

· the first Z1 have source block size K1 = ceil(Kt/Z)

· the remaining Z2 have source block size K2 = floor(Kt/Z)

· and Z1 = Kt – K2*Z and Z2=Z-Z1.
Table 1 Parameters for Download Test Case

	Common
	Code-Specific

	Test Case
	Error conditions
	File size FS
	T’
	Kt
	Z
	T
	OTI
	O
	Nt
	SeSt
	Notes

	LD60
	Markov, 3km/h, 20%
	HD
	1288
	1465402
	
	
	
	
	
	
	

	LD108
	Markov, 120km/h, 5%
	Clip
	1288
	2443
	
	
	
	
	
	
	

	LD109
	
	SD
	1288
	104207
	
	
	
	
	
	
	

	LD110
	
	HD
	1288
	1465402
	
	
	
	
	
	
	

	LD118
	Markov, 120km/h, 20%
	Clip
	1288
	2443
	
	
	
	
	
	
	

	LD119
	
	SD
	1288
	104207
	
	
	
	
	
	
	

Generate FLUTE Packet Test Streams

Process

Apply the following actions on the host

· Download the following file http://media.xiph.org/ED/ed-pixlet.mov
· for each test case LDX according to Table 1
· generate segments and MD5

· generate temporary file of size FS:
head -c <file size> ed-pixlet.mov > data.tmp
· create the MD5 for the file:
cat data.tmp | openssl md5 | awk '{ print $2 }' > ldX.md5
· FEC encode to PCAP file as follows
· Put FDT for the file in first packet specifying at least the following parameters

· TOI

· FEC-OTI

Note: Content-Location and Content-Length may not be added as they are not necessary. Transfer-Length in the FEC-OTI is sufficient.
· encode file into ALC/LCT packets using the test case parameters according to Table 1 for the candidate

Note: End of session and end of object transmission signalling may be used by setting the A and B flag in the LCT header.
· provide packets with UDP payload size according to Table 1. The ALC/LCT/UDP/IPv4 header is in total 44 bytes.
Output

The output from this process is, for each test case:

· TOI and MD5 for the file. Note that the TOI and MD5 are not code specific. Note that the TOI in this case is typically 1.
· PCAP file that contains encoded file preceded with an FDT (for details refer to TS26.346, section 7.2.9). The PCAP file name for an example code with code name X is provided in Table 2 along with the total number of packets. It is expected that these PCAP files are provided for verification and also as test vectors to be added to the technical report.
Table 2 PCAP files and Segment List for a virtual code X
	Test Case
	Error conditions
	PCAP file
	Number of Packets
(Code-specific)
	MD5 file

	LD60
	Markov, 3km/h, 20%
	ld060_codeX.cap
	
	ld060.md5

	LD108
	Markov, 120km/h, 5%
	ld108_codeX.cap
	
	ld108.md5

	LD109
	
	ld109_codeX.cap
	
	ld109.md5

	LD110
	
	ld110_codeX.cap
	
	ld110.md5

	LD118
	Markov, 120km/h, 20%
	ld118_codeX.cap
	
	ld118.md5

	LD119
	
	ld119_codeX.cap
	
	ld119.md5

Generate Erroneous Packet Streams

LTE Traces

Several LTE Error Trace are provided for each test case in the attached package. The files are named error_trace_ld<testcase>_<trno>.txt. The details are summarized in Table 3.

The format of the error traces (using regular expression
) is as follows

<Number L of loss/received events in ASCII>[newline]

 <sequence of L 0 and 1 characters>
whereL is the maximum number of packets that the input PCAP file may have followed on the next line with a string made of characters ‘0’ (packet received) and ‘1’ (packet is lost) of length L. One example would be:
12

001011100100
i.e. the length of the of string of 0s and 1s is given by the integer on the first line.
Table 3 Error traces for download test cases with losses and loss statistics. These are accumulated.
	Test Case
	Error conditions
	File size
	S
	PCAP file
	Length N
	Loss Percentage

	LD60
	Markov, 3km/h, 20%
	HD
	1
	error_trace_ld60_<trno>.cap
	2000000
	20.14

	LD108
	Markov, 120km/h, 5%
	Clip
	20
	error_trace_ld108_<trno>.cap
	3400
	5.47

	LD109
	
	SD
	5
	error_trace_ld109_<trno>.cap
	150000
	5.46

	LD110
	
	HD
	1
	error_trace_ld110_<trno>.cap
	2000000
	5.48

	LD118
	Markov, 120km/h, 20%
	Clip
	20
	error_trace_ld118_<trno>.cap
	3400
	20.85

	LD119
	
	SD
	5
	error_trace_ld119_<trno>.cap
	150000
	20.81

A process for generating the error traces independently is provided in section 6.2.
Apply to LTE traces to PCAP streams

In order to introduce loss into a controlled manner to the PCAP files using the Markov error traces, a tool called pcaploss, available in source code form, is available and attached in the package (including Makefile). This tool takes a pcap file as input and transforms it into another altered pcap. The usage message for pcaploss is:

pcaploss: Usage: ./pcaploss <pcap_in> <pcap_out> <loss_file> [<#pkts>]
where the format of the loss trace file is according to the format introduced in section 3.3.3.1. If the optional integer argument #pkts is present, only the number of packets indicated by #pkts will be read in from pcap_in before pcaploss closes the output file and stops.

The pcap for transmission may be prepped with the right MAC/IP addresses for both sender and receiver. On the sender side MAC and IP can be obtained with command ‘ipconfig/ all’ on Windows, e.g.:

Ethernet adapter Local Area Connection 4:

 Connection-specific DNS Suffix . :

 Description : SAMSUNG Mobile USB Remote NDIS Network Device

 Physical Address. : 02-65-64-60-6E-0B

 DHCP Enabled. : Yes

 Autoconfiguration Enabled : Yes

 Link-local IPv6 Address : fe80::117:1bc9:34df:dd76%26(Preferred)

 IPv4 Address. : 192.168.42.149(Preferred)

 Subnet Mask : 255.255.255.0

 Lease Obtained. : Monday, July 16, 2012 3:37:43 PM

 Lease Expires : Monday, July 16, 2012 4:37:50 PM

 Default Gateway : 192.168.42.129

 DHCP Server : 192.168.42.129

 DHCPv6 IAID : 855795044

 DHCPv6 Client DUID. : 00-01-00-01-14-97-F4-E0-F4-CE-46-AC-6F-32

 DNS Servers : 192.168.42.129

 NetBIOS over Tcpip. : Enabled
where hardware and IP addresses are 02:65:64:60:6E:0B and 192.168.42.149 respectively. On the receiver side a multicast IP address and associated MAC could be 230.20.20.10 and 01:00:5e:66:14:14:0a.

With the information above and for each test case LDY in Table 7 and each trace number trno, the following process is applied:

./tcprewrite --distip=0.0.0.0/0:230.20.20.10 --enet-dmac= 01:00:5e:66:14:14:0a --srcip=0.0.0.0/0: 192.168.42.149 --enet-smac=02:65:64:60:6E:0B --fixcsum -i ldY_codeX.cap -o temp.cap

./pcaploss temp.cap ldY_codeX_ldY_<trno>.cap errortrace_ldY_<trno>.txt

Note that the integration of the Ethernet and IP addresses with tcprewrite is optional and may only be done absence of any other knowledge. tcprewrite is included in the TCPreplay suite, for details refer to section 6.6.2.
Output

The outputs of this process are S PCAP file for each test case. The PCAP files are summarized in Table 4. The length of the PCAP file depends on the loss statistics.
Table 4 PCAP files for a virtual code X after applying channel that maps to specific channel model

	Test Case
	Error conditions
	File size
	S
	PCAP file

	LD60
	Markov, 3km/h, 20%
	HD
	1
	ld060_codeX_ld060_<trno>.cap

	LD108
	Markov, 120km/h, 5%
	Clip
	20
	ld108_codeX_ld108_<trno>.cap

	LD109
	
	SD
	5
	ld109_codeX_ld109_<trno>.cap

	LD110
	
	HD
	1
	ld110_codeX_ld110_<trno>.cap

	LD118
	Markov, 120km/h, 20%
	Clip
	20
	ld118_codeX_ld118_<trno>.pcap

	LD119
	
	SD
	5
	ld119_codeX_ld119_<trno>.pcap

Generate Device Performance Measures

Setup

The following device/operating conditions are used:

· Device

· Samsung Galaxy S2 (GT-I9100) Smartphone, running Android 4.0.3. The processor is a Dual-core Exynos 4210 1.2GHz processor ARM Cortex-A9.
· Samsung MB-MSBGA Flash memory card - 32 GB microSDHC - 1 x microSDHC SD Card (Class 10) (for example available on Amazon: http://www.amazon.com/Samsung-microSDHC-Flash-Memory-Brushed/dp/B005TUQV0E/ref=sr_1_1?ie=UTF8&qid=1342021891&sr=8-1&keywords=Samsung+MB-MSBGA+Flash+memory+card+-+32+GB+microSDHC+-+1+x+microSDHC+SD+Card+%28Class+10%29)
· Root access is applied to the device, for details see section 6.3.
· network2sd executable for reading packets from network interface and writing it in a suitable manner to the SD card in order optimize reading while decoding. For details on functionalities, see section 3.2.4.2.1.
· ld_decoder executable for FEC decoding based on data on the SD card of the device and for writing subblock data to SD card. For details on functionalities, see section 3.2.4.2.2.
· push the Unix 'time' command on the device, for details see section 6.4.

· an ssh server is installed and running on the device to get shell access while USB tethering is active. See section 6.7 for details.

· The host PC

· can be any OS, but typically Windows or Linux
· The host PC is connected to the Device using USB tethering through an interface. It is assumed that the interface has assigned name Samsung.

· the host does have a functionality installed that permits to push the stored PCAP files to the device. For details, see section 6.6. In the following it is assumed that the ColaSoft Packet Player is available.

· The details of connecting device and host PC are provided in section 6.5.
Code-specific Tools

Read from network and write to SD

The network2sd executable for reading packets from network interface and writing it in a suitable manner to the SD card in order optimize reading while decoding. The network2sd writes some information to stdout, which is used by ld_ecoder as input to locate the relevant information.
For the purpose of implementing receiving payload data reading and writing to flash/disk, standard Android procedures and functions shall be used.
Decoding from and to SD card
The ld_decoder executable receives reads input data from SD card and writes it back to SD card sub-block by sub-block. The ld_decoder receives information from the network2sd process in order to locate the relevant data.
Process

For each test case LDX from Table 1 and each <trno>, the following processes are carried out in the following sequence:

· On the device start the following process in directory /data/data/berserker.android.apps.sshdroid/home with device Wifi IP of 192.168.2.102 an ssh server running on port 2222
1. ssh -p 2222 root@192.168.2.102
2. When asked for passwd, type: "admin"
3. Use rm to clear all disk space on SD card
4. time -v ./network2sd info.txt 2> time1.txt
· On the host start the Colasoft Packet Player with the following
· Adapter: Samsung

· Packet File: Add -> File of type: libpcap (*.cap)

· Select file ldY_codeX_ldY_<trno>.cap
· Click button "Play"
· After termination at the device, the following is carried on the device
5. echo 1 > /proc/sys/vm/drop_caches (# this is for clearing caches)

6. time -v ./ld_decoder info.txt 2> time2.txt

7. (generate md5 and TOI > out.txt)
· After termination at the device, the following is carried out on the host
scp –P 2222 root@192.168.2.102:/data/data/berserker.android.apps.sshdroid/home/out.txt ldY_codeX_ldY_<trno>.out
scp –P 2222 root@192.168.2.102:/data/data/berserker.android.apps.sshdroid/home/time1.txt ldY_codeX_ldY_<trno>.time1

scp –P 2222 root@192.168.2.102:/data/data/berserker.android.apps.sshdroid/home/time2.txt ldY_codeX_ldY_<trno>.time2
Error Free Process

In order to understand the influence of supplementary processes to the FEC decoding, the same process as described in 3.2.4.3 may carried out for the error-free pcap files. To do so, all files ldY_codeX_ldY_<trno>.* can be replaced by ldY_codeX.*. Proponents may use any method to illustrate the Error Free process. This Error Free Process shall reflect the processes, which are FEC independent.
Note that this process is optional for the proponent and may be done only in the verification.
Output

The output of this process is one performance file and one result file for each test case. The files are summarized in Table 5.
Table 5 Performance and result file for a virtual code X after decoding

	Test Case
	Error-Free Performance (optional)
	S
	Result
	Performance files

	LD60
	ld060_codeX.time
	1
	ld060_codeX_ld060_<trno>.out
	ld060_codeX_ld060_<trno>.time

	LD108
	ld108_codeX.time
	20
	ld108_codeX_ld108_<trno>.out
	ld108_codeX_ld108_<trno>.time

	LD109
	ld109_codeX.time
	5
	ld109_codeX_ld109_<trno>.out
	ld109_codeX_ld109_<trno>.time

	LD110
	ld110_codeX.time
	1
	ld110_codeX_ld110_<trno>.out
	ld110_codeX_ld110_<trno>.time

	LD118
	ld118_codeX.time
	20
	ld118_codeX_ld118_<trno>.out
	ld118_codeX_ld118_<trno>.time

	LD119
	ld119_codeX.time
	5
	ld119_codeX_ld119_<trno>.out
	ld119_codeX_ld119_<trno>.time

Evaluation

General
After all test cases are completed the output files as presented in Table 5 are available. These files may be moved back to the host for evaluation.

Correct Decoding

To verify that decoding was successful for each test case or to identify the number of unsuccessful attempts, the result files ldY_codeX_ldY_<trno>.out are collected and for each one it is compared if the TOI and MD5 are identical with ldY.md5. If not identical, one error event is recorded.
Performance Evaluation

The output will then be akin to the following for the two time files:

 Command being timed: "ld_decoder"

 User time (seconds): 1.49

 System time (seconds): 0.36

 Percent of CPU this job got: 73%

 Elapsed (wall clock) time (h:mm:ss or m:ss): 0m 2.52s

 Average shared text size (kbytes): 0

 Average unshared data size (kbytes): 0

 Average stack size (kbytes): 0

 Average total size (kbytes): 0

 Maximum resident set size (kbytes): 165456
 Average resident set size (kbytes): 0

 Major (requiring I/O) page faults: 1

 Minor (reclaiming a frame) page faults: 21740

 Voluntary context switches: 9659

 Involuntary context switches: 10442

 Swaps: 0

 File system inputs: 0

 File system outputs: 0

 Socket messages sent: 0

 Socket messages received: 0

 Signals delivered: 0

 Page size (bytes): 4096

 Exit status: 0
The relevant entries here are "system time", "user time" (the sum of which is to be reported as the processing cost), and "Maximum resident set size". The memory usage to be reported is 1/4 of that given as the "Maximum resident set size" in an unpatched busybox 1.19.0. The reason for this division by 4 is that busybox has a bug which causes it to overestimate memory usage by a factor of 4, just like the GNU time utility from which it is presumably inheriting this mistake. See the bug report here
.

The following performance data measurement is proposed:

· Generate the numbers from above for the considered test case

· Generate the numbers from above for a zero loss trace

· Report the following numbers for each test case and the zero loss trace:

· U: User time (seconds)

· S: System time (seconds)

· P: Percent of CPU this job got

· W: Elapsed (wall clock) time (h:mm:ss or m:ss):

· M: Maximum resident set size (kbytes)

· Generate the following numbers for performance evaluation based on the above results and the object size F (in bytes) for each test case and trace number:
· Speed: Average decoding speed (in MBit/s): F*8/(1000000*(U+S))
· Time1: Decoding time (in s): U+S
· Time2: weighted elapsed time (in s): P*W/100

· Memory: Peak memory usage (in MBytes): M/4096

Performance Documentation

The following values are to be reported for each test case be using the results from each trno = 0, ..., S-1 and the error free decoding:
· Np the total number of packets used for decoding

· E the total number of file delivery attempts that failed (should be 0)

· AvSpeed the average speed over all S decoding attempts

· AvTime1 the average decode time over all S decoding attempts
· AvTime2 the weighted elapsed time over all S decoding attempts

· MinSpeed the minimum speed over all S decoding attempts

· MaxTime1 the maximum decoding over all S decoding attempts
· MaxTime2 the weighted elapsed time over all S decoding attempts

· MaxMem the maximum memory over all S decoding attempts

· EfSpeed the speed for error-free decoding attempt

· EfTime1 the Time for error-free decoding attempt

· EfTime2 the Time for error-free decoding attempt

· EfMem the Memory for error-free decoding attempt

Note that
· the error-free results are not required, but recommended to be provided.
· the data are obviously expected to be provided for the network2sd and ld_ecoder process.
Table 6 Performance Data for Download Delivery Test Cases

	Test Case
	S
	Np
	E
	AvSpeed
(MBit/s)
	AvTime1

(sec)
	AvTime2

(sec)
	MinSpeed
(MBit/s)
	MaxTime2
(sec)
	MaxTime2
(sec)
	MaxMem
(MByte)
	EfSpeed
(MBit/s)
	EfTime1
(sec)
	EfTime2
(sec)
	EfMem
(MByte)

	LD60
	1
	
	
	
	
	
	
	
	
	
	
	
	
	

	LD108
	20
	
	
	
	
	
	
	
	
	
	
	
	
	

	LD109
	5
	
	
	
	
	
	
	
	
	
	
	
	
	

	LD110
	1
	
	
	
	
	
	
	
	
	
	
	
	
	

	LD118
	20
	
	
	
	
	
	
	
	
	
	
	
	
	

	LD119
	5
	
	
	
	
	
	
	
	
	
	
	
	
	

Streaming Delivery

Summary Test Cases
Table 7 Parameters for Streaming Test Case

	Common Parameters
	Code-specific Parameters

(THESE ARE EXAMPLES ONLY)

	Test Case
	Error conditions
	Segment Duration
	T’
	N’
	Packet Interval
	Number Segments Y
(time=30min)
	G
	K
	Segment
Size S
	Media
Rate

	LS21
	Markov, 3km/h, 20%
	1s
	1288
	100
	10ms
	1800
	1
	37
	47656
	381.25

	LS49
	
	2s
	1288
	200
	10ms
	900
	1
	103
	132664
	530.66

	LS24
	
	4s
	1288
	400
	10ms
	450
	1
	246
	316848
	633.70

	LS33
	Markov, 120km/h, 5%
	1s
	1288
	100
	10ms
	1800
	1
	85
	109480
	875.84

	LS50
	
	2s
	1288
	200
	10ms
	900
	1
	178
	229264
	917.06

	LS36
	
	4s
	1288
	400
	10ms
	450
	1
	364
	468832
	937.66

	LS45
	Markov, 120km/h, 20%
	1s
	1288
	100
	10ms
	1800
	1
	64
	82432
	659.46

	LS51
	
	2s
	1288
	200
	10ms
	900
	1
	139
	179032
	716.13

	LS48
	
	4s
	1288
	400
	10ms
	450
	1
	291
	374808
	749.62

Generate FLUTE Packet Test Streams

Process

Apply the following actions on the host

· Download the following file http://media.xiph.org/ED/ed-pixlet.mov
· for each test case LSX according to Table 7
· generate segments and MD5

· split the file in to Y segments, each of size S

· create the MD5 for each of the segments and create a file that lists the TOI and the MD5
· the shell script in section 6.1 can be used for this purpose. It creates as output the segment number as well as the MD5 for the segment
· FEC encode to PCAP file as follows:
· Provide FDT for each segment just before first packet of a segment specifying at least the following parameters
· TOI

· FEC-OTI
Note:

· Content-Location and Content-Length are not added as they are not necessary. Transfer Encoding is sufficient.

· encode each segment sequentially with increasing TOI numbers 1 ... Y into ALC/LCT packets using the test case parameters according to Table 7 for the candidate
· number of source symbols K,

· number of transmitted symbols N,

· symbol size T,

· sub-blocking parameters if needed
Note: End of session and end of object transmission signalling may be used by setting the A and B flag in the LCT header.
· for all ALC/LCT packets with TOI not equal to 0,

· provide packets with UDP payload size according to Table 7. The ALC/LCT/UDP/IPv4 header is in total 44 bytes.
· If in doubt or unclear what to use, include the timing for the real-time bitrate, i.e. 1 packet every according to the packet interval in Table 7. Note that the tool pcaploss rewrites correctly the packet timestamps with the right transmission time interval.
· for all ALC/LCT packets with TOI equal to 0, i.e. FDT packets

· provide packets with UDP payload size according to Table 7. The ALC/LCT/UDP/IPv4 header is in total 44 bytes.

· If in doubt or unclear what to use, include a timing that is 50% of the packet interval in Table 7 earlier than the one in the first packet of the object with the TOI included in this FDT. Note that the tool pcaploss rewrites correctly the packet timestamps with the right transmission time interval.
Output

The output from this process is for each test case:

· File that contains TOI and MD5 for each of the segments
· PCAP file that contains a sequence of segments prefixed with a single multi-packet FDT that summarizes the entire sequence. The PCAP file name for a code with code name X is provided in Table 8 along with the total number of packets
Table 8 PCAP files and Segment List for a virtual code X

	Test Case
	Error conditions
	PCAP file
	Number of Data Packets
	Segment list

	LS21
	Markov, 3km/h, 20%
	ls21_codeX.cap
	180000
	ls21.md5

	LS49
	
	ls49_codeX.cap
	180000
	ls49.md5

	LS24
	
	ls24_codeX.cap
	180000
	ls24.md5

	LS33
	Markov, 120km/h, 5%
	ls33_codeX.cap
	180000
	ls33.md5

	LS50
	
	ls50_codeX.cap
	180000
	ls50.md5

	LS36
	
	ls36_codeX.cap
	180000
	ls36.md5

	LS45
	Markov, 120km/h, 20%
	ls45_codeX.cap
	180000
	ls45.md5

	LS51
	
	ls51_codeX.cap
	180000
	ls51.md5

	LS48
	
	ls48_codeX.cap
	180000
	ls48.md5

Generate Erroneous Packet Streams

LTE Traces

One LTE Error Trace is provided for each test case in the attached package. The files are named error_trace_ls<testcase>.txt. The details are summarizes in Table 9.
The format of the error traces is as follows

<Number L of loss/received events in ASCII>[newline]

[0|1]{L,L}

where L is the maximum number of packets that the input pcap file may have followed on the next line with a string made of characters ‘0’ (packet received) and ‘1’ (packet is lost) of length L.

Table 9 Error traces for streaming test cases with losses and loss percentage
	Test Case
	Error conditions
	Error Trace
	Length N
	Loss Percentage

	LS21
	Markov, 3km/h, 20%
	errortrace_ls21.txt
	180000
	19.94

	LS49
	
	errortrace_ls49.txt
	180000
	19.94

	LS24
	
	errortrace_ls24.txt
	180000
	19.94

	LS33
	Markov, 120km/h, 5%
	errortrace_ls33.txt
	180000
	5.41

	LS50
	
	errortrace_ls50.txt
	180000
	5.41

	LS36
	
	errortrace_ls36.txt
	180000
	5.41

	LS45
	Markov, 120km/h, 20%
	errortrace_ls45.txt
	180000
	20.80

	LS51
	
	errortrace_ls51.txt
	180000
	20.80

	LS48
	
	errortrace_ls48.txt
	180000
	20.80

A process for generating the error traces independently is provided in section 6.2.
Apply to LTE traces to PCAP streams

In order to introduce loss into a controlled manner to the PCAP files using the Markov error traces, a tool called pcaploss, available in source code form, is available and attached in the package (including Makefile). This tool takes a pcap file as input and transforms it into another altered pcap. The usage message for pcaploss is:

pcaploss: Usage: ./pcaploss <pcap_in> <pcap_out> <loss_file> [<#pkts>]
where the format of the loss trace file is according to the format introduced in section 3.3.3.1. If the optional integer argument #pkts is present, only the number of packets indicated by #pkts will be read in from pcap_in before pcaploss closes the output file and stops.

The pcap for transmission may be prepped with the right MAC/IP addresses for both sender and receiver. On the sender side MAC and IP can be obtained with command ‘ipconfig/ all’ on Windows, e.g.:

Ethernet adapter Local Area Connection 4:

 Connection-specific DNS Suffix . :

 Description : SAMSUNG Mobile USB Remote NDIS Network Device

 Physical Address. : 02-65-64-60-6E-0B

 DHCP Enabled. : Yes

 Autoconfiguration Enabled : Yes

 Link-local IPv6 Address : fe80::117:1bc9:34df:dd76%26(Preferred)

 IPv4 Address. : 192.168.42.149(Preferred)

 Subnet Mask : 255.255.255.0

 Lease Obtained. : Monday, July 16, 2012 3:37:43 PM

 Lease Expires : Monday, July 16, 2012 4:37:50 PM

 Default Gateway : 192.168.42.129

 DHCP Server : 192.168.42.129

 DHCPv6 IAID : 855795044

 DHCPv6 Client DUID. : 00-01-00-01-14-97-F4-E0-F4-CE-46-AC-6F-32

 DNS Servers : 192.168.42.129

 NetBIOS over Tcpip. : Enabled
where hardware and IP addresses are 02-65-64-60-6E-0B and 192.168.42.149 respectively. On the receiver side a multicast IP address and associated MAC could be 230.20.20.10 and 01:00:5e:66:14:14:0a.

With the information above and for each test case LSY in Table 7, the following process is applied:
./tcprewrite --distip=0.0.0.0/0:230.20.20.10 --enet-dmac= 01:00:5e:66:14:14:0a --srcip=0.0.0.0/0:192.168.42.149 --enet-smac=02:65:64:60:6E:0B --fixcsum -i ldY_codeX.cap -o temp.cap

./pcaploss temp.cap ldY_codeX_ldY_<trno>.cap errortrace_ldY_<trno>.txt

Note that the integration of the Ethernet and IP addresses with tcprewrite is optional and may only be done absence of any other knowledge. tcprewrite is included in the TCPreplay suite, for details refer to section 6.6.2.
Output

The output of this process is one PCAP file for each test case. The PCAP files are summarized in Table 10. The length of the PCAP file depends on the loss statistics.
Table 10 PCAP files for a virtual code X after applying channel that maps to specific channel model

	Test Case
	Error conditions
	Error Trace
	Number of Packets
(CODE DEPENDENT)

	LS21
	Markov, 3km/h, 20%
	ls21_codeX_ls21.cap
	

	LS49
	
	ls49_codeX_ls49.cap
	

	LS24
	
	ls24_codeX_ls24.cap
	

	LS33
	Markov, 120km/h, 5%
	ls33_codeX_ls33.cap
	

	LS50
	
	ls50_codeX_ls50.cap
	

	LS36
	
	ls36_codeX_ls36.cap
	

	LS45
	Markov, 120km/h, 20%
	ls45_codeX_ls45.cap
	

	LS51
	
	ls51_codeX_ls51.cap
	

	LS48
	
	ls48_codeX_ls48.cap
	

Generate Device Performance Measures
Setup

The following device/operating conditions are used:

· Device

· Samsung Galaxy S2 (GT-I9100) Smartphone, running Android 4.0.3. The processor is a Dual-core Exynos 4210 1.2GHz processor ARM Cortex-A9.
· Root access is applied to the device, for details see section 6.3.
· ls_decoder executable for FEC decoding available on the device, for details on functionalities, see section 3.3.4.2.

· verifysegm for generating the md5 or a received segment push the data to stdout with TOI and length. For details on functionalities, see section 6.8.

· push the Unix 'time' command on the device, for details see section 6.4.
· The host PC

· can be any OS, but typically Windows or Linux
· The host PC is connected to the Device using USB tethering through an interface. It is assumed that the interface has assigned name Samsung.
· the host does have a functionality installed that permits to push the stored PCAP files to the device. For details, see section 6.6. In the following it is assumed that ColaSoft Packet Player is available.

· The details of connecting device and host PC are provided in section 6.5.
Decoder

The ls_ecoder executable receives its input data via the network interface card (UDP/ALC/LCT packets) and writes on stdout decoded source block.

If correction of the segment is successful, this application writes on stdout:

[TOI (32-bit) | length (32-bit) | <sequence of segment bytes>]
where TOI is the segment Transport Object Identifier followed by the length of the decoded segment in bytes and the actual recovered segment data. TOI and length are in network-byte order.
Note that the proponent need not use the provided verifysegm, but provide its own verification program. In this case the interface between the decoder and the verification program may for example use the segment name instead of the TOI.
Process

For each test case LSX from Table 7, the following processes are carried out in the following sequence:

· On the device start the following process in directory /data/data/berserker.android.apps.sshdroid/home with device Wifi IP of 192.168.2.102 and an ssh server running on port 2222:
1. ssh -p 2222 root@192.168.2.102
2. When asked for password, type ‘admin'
3. time -v ls_decoder | time -v verifysegm > out.txt 2> time.txt

· On the host start the Colasoft Packet Player with the following:
· Adapter: Samsung

· Packet File: Add -> File of type: libpcap (*.cap)

· Select file lsY_codeX_lsY_<trno>.cap
· Click button Play

· After termination at the device, the following is carried out on the host:
scp –P 2222 root@192.168.2.102:/data/data/berserker.android.apps.sshdroid/home/out.txt lsY_codeX_lsY.out
scp –P 2222 root@192.168.2.102:/data/data/berserker.android.apps.sshdroid/home/time.txt lsY_codeX_lsY.time

Error-Free Process

The same process as described in 3.3.4.3 is carried out for the error-free pcap files. To do so, all files lsY_codeX_lsY.* are replaces by lsY_codeX.*.

Note that this process is optional for the proponent and may be done only in the verification.
Output

The output of this process is one performance file and one result file for each test case. The files are summarized in Table 13.
Table 11 Performance and result file for a virtual code X after decoding
	Test Case
	Error conditions
	Result
	Performance
	Error-Free Performance

	LS21
	Markov,
3km/h, 20%
	ls21_codeX_ls21.out
	ls21_codeX_ls21.time
	ls21_codeX.time

	LS49
	
	ls49_codeX_ls49.out
	ls49_codeX_ls49.time
	ls49_codeX.time

	LS24
	
	ls24_codeX_ls24.out
	ls24_codeX_ls24.time
	ls24_codeX.time

	LS33
	Markov, 120km/h, 5%
	ls33_codeX_ls33.out
	ls33_codeX_ls33.time
	ls33_codeX.time

	LS50
	
	ls50_codeX_ls50.out
	ls50_codeX_ls50.time
	ls50_codeX.time

	LS36
	
	ls36_codeX_ls36.out
	ls36_codeX_ls36.time
	ls36_codeX.time

	LS45
	Markov, 120km/h, 20%
	ls45_codeX_ls45.out
	ls45_codeX_ls45.time
	ls45_codeX.time

	LS51
	
	ls51_codeX_ls51.out
	ls51_codeX_ls51.time
	ls51_codeX.time

	LS48
	
	ls48_codeX_ls48.out
	ls48_codeX_ls48.time
	ls48_codeX.time

Evaluation

General
After all test cases are completed the output files as presented in Table 11 are available. These files are moved back to the host for evaluation.
Correct Decoding

The number of successfully decoded segments can be computed as follows (on a UNIX machine):

cat lsY_codeX.md5 lsY_codeX.out | sort | uniq –d | wc –l
Performance Evaluation
The output of lsY_codeX(_lsY).time will be something like this:

 Command being timed: "ls_decoder"

 User time (seconds): 1.49

 System time (seconds): 0.36

 Percent of CPU this job got: 73%

 Elapsed (wall clock) time (h:mm:ss or m:ss): 0m 2.52s

 Average shared text size (kbytes): 0

 Average unshared data size (kbytes): 0

 Average stack size (kbytes): 0

 Average total size (kbytes): 0

 Maximum resident set size (kbytes): 165456

 Average resident set size (kbytes): 0

 Major (requiring I/O) page faults: 1

 Minor (reclaiming a frame) page faults: 21740

 Voluntary context switches: 9659

 Involuntary context switches: 10442

 Swaps: 0

 File system inputs: 0

 File system outputs: 0

 Socket messages sent: 0

 Socket messages received: 0

 Signals delivered: 0

 Page size (bytes): 4096

 Exit status: 0
The relevant entries here are system time, user time (the sum of which is to be reported as the processing cost), and Maximum resident set size. The memory usage to be reported is 1/4 of that given as the Maximum resident set size in an unpatched busybox 1.19.0. The reason for this division by 4 is that busybox has a bug which causes it to overestimate memory usage by a factor of 4, just like the GNU time utility from which it is presumably inheriting this mistake. See the bug report here
.

The following performance data measurement is proposed:

· Generate the numbers from above for the considered test case

· Generate the numbers from above for a zero loss trace

· Report the following numbers for each test case and the zero loss trace:

· U: User time (seconds)
· S: System time (seconds)
· P: Percent of CPU this job got
· Elapsed (wall clock) time (h:mm:ss or m:ss):

· M: Maximum resident set size (kbytes)
· Generate the following numbers for performance evaluation based on the above results and the segment duration D (in seconds), the media bitrate R (in kBit/s), and the duration of the media data t (in seconds):

· Speed: Average decoding speed (in MBit/s): R*t/(1000*(U+S))

· Latency: Average decoding latency (in ms): D*(1000*(U+S))/t
· Memory: Peak memory usage (in MBytes): M/4096
Performance Documentation
The performance should be documented according to Table 12. The right three columns document the performance for error-free transmission and are not required to be provided.
Table 12 Performance Data for Streaming Test Cases

	Test Case
	Error conditions
	G
	K
	E
	Speed (MBit/s)
	Latency (ms)
	Memory (MByte)
	EF-Speed (MBit/s)
	EF-Latency (ms)
	EF-Memory (MByte)

	LS21
	Markov, 3km/h, 20%
	
	
	
	
	
	
	
	
	

	LS49
	
	
	
	
	
	
	
	
	
	

	LS24
	
	
	
	
	
	
	
	
	
	

	LS33
	Markov, 120km/h, 5%
	
	
	
	
	
	
	
	
	

	LS50
	
	
	
	
	
	
	
	
	
	

	LS36
	
	
	
	
	
	
	
	
	
	

	LS45
	Markov, 120km/h, 20%
	
	
	
	
	
	
	
	
	

	LS51
	
	
	
	
	
	
	
	
	
	

	LS48
	
	
	
	
	
	
	
	
	
	

4 Attachments

The following files are attached to this test plan:
· LossGenerator.zip: A packet to generate the relevant Markov error traces.
· pcaploss.zip: Package that includes a tcprewrite functionality to generate PCAP traces with losses according to a Markov trace.
· Traces.zip: all relevant error traces for this test

· verifysegm.zip: verification tool to generate MD5 for generated segment.
5 Verification Process
A process for verification of the provided results needs to be defined.
On a high-level, it seems that by each proponent providing

· the ls_decoder, ld_decoder and network2sd utilities executable for Android with the appropriate I/O interfaces,

· error free pcap traces for the different test case

verification based on the available tools can be done independently.

More details will be defined in the next stage.

Annex:

6 Tools

Split file into segments and generate MD5
This Unix script creates <total> smaller segments, each of size <bytes> from file <file> and names the segments with <prefix>08%d.
#!/bin/sh

Split large file segments and create md5
if [$# -eq 4]

then

 rm -f $3*
 head -c 231840000 $2 > /tmp/temp.mov

 split -d -a 4 -b $1 /tmp/temp.mov $3

 rm -f /tmp/temp.mov

 j=0

 for i in `ls -1 $3*`;

 do

 j=`expr $j + 1`;

 if [$j -le $4]

 then

x=`echo $3 $j | awk '{ printf ("%s%08d", $1, $2) }'`

mv $i $x;

MD5=`cat $x | md5sum | awk '{ print $1 }'`

echo '$j $MD5'
 else

 rm $i

 fi

 done

else

 echo $# 'usage: split_with_numbers.sh <bytes> <file> <prefix> <total>'

fi
Generate Markov Traces
The attached java code "LossGenerator.java" and "Random.java" may be used to generate the loss traces independently. The java trace file can be executed as follows:

java LossVectorGenerator p q gBLER bBLER subsamp n seed offset vectorfile
with:

p (transition probability from good to bad state)

q (transition probability from bad to good state)

gBLER (BLER for the good markov state)

bBLER (BLER for the bad markov state)

subsamp (subsampling for markov trace)

n (length of the vector to be generated)

seed (for the prng)

offset (iterate n times before generating the vector)

vectorFile (file name where to output the vector)

Table 13 provides the instructions how to generate the error traces for the streaming test cases.

Table 13 Markov Trace generation for streaming test cases

	Test Case
	Error conditions
	Test Script parameters

	LS21
	Markov, 3km/h, 20%
	0.0461 0.1680 0.0016 0.8920 1 180000 0 0 errortrace_ls21.txt

	LS49
	
	0.0461 0.1680 0.0016 0.8920 1 180000 0 0 errortrace_ls49.txt

	LS24
	
	0.0461 0.1680 0.0016 0.8920 1 180000 0 0 errortrace_ls24.txt

	LS33
	Markov, 120km/h, 5%
	0.2707 0.7095 0.0000 0.1954 1 180000 0 0 errortrace_ls33.txt

	LS50
	
	0.2707 0.7095 0.0000 0.1954 1 180000 0 0 errortrace_ls50.txt

	LS36
	
	0.2707 0.7095 0.0000 0.1954 1 180000 0 0 errortrace_ls36.txt

	LS45
	Markov, 120km/h, 20%
	0.3560 0.6329 0.0972 0.4040 1 180000 0 0 errortrace_ls45.txt

	LS51
	
	0.3560 0.6329 0.0972 0.4040 1 180000 0 0 errortrace_ls51.txt

	LS48
	
	0.3560 0.6329 0.0972 0.4040 1 180000 0 0 errortrace_ls48.txt

Table 14 provides the instructions how to generate the error traces for the download test cases. The <length> corresponds to the Length in the table and the <offset> is the trace number minus one multiplied by the length. The trno runs from 1 to S.
Table 14 Markov Trace generation for download test cases

	Test Case
	S
	Length
	PCAP file

	LD60
	1
	2000000
	0.0461 0.1680 0.0016 0.8920 1 <length> 0 <offset> error_trace_ld60_<trno>.pcap

	LD108
	20
	3400
	0.2707 0.7095 0.0000 0.1954 1 <length> 0 <offset> error_trace_ld108_<trno>.pcap

	LD109
	5
	150000
	0.2707 0.7095 0.0000 0.1954 1 <length> 0 <offset> error_trace_ld109_<trno>.pcap

	LD110
	1
	2000000
	0.2707 0.7095 0.0000 0.1954 1 <length> 0 <offset> error_trace_ld110_<trno>.pcap

	LD118
	20
	3400
	0.3560 0.6329 0.0972 0.4040 1 <length> 0 <offset> error_trace_ld118_<trno>.pcap

	LD119
	5
	150000
	0.3560 0.6329 0.0972 0.4040 1 <length> 0 <offset> error_trace_ld119_<trno>.pcap

Root access for Galaxy S2
Here is few procedure to root the Samsung S2:
· http://forum.xda-developers.com/showthread.php?t=1501719
Once the phone is rooted, to turn on performance mode and disable the second CPU core:

· cd /sys/devices/system/cpu/cpu0/cpufreq

· cat scaling_governor

· this will tell the current mode (on-demand or performance)

· echo performance > scaling_governor

· turn on performance mode. echo ondemand to turn off
· NOT a sticky command i.e. value resets to ondemand after reset

· note: performance mode will keep it at 1.5GHz, even at idle

· In ondemand mode - at idle, without a data transfer or anything else running on the device, cpu0 should be running at much lower speed

· cat scaling_cur_freq

· display current clock frequency in kHz

· cd /sys/devices/system/cpu/cpu1/cpufreq

· to check the settings for cpu1

· NOTE: if core 1 is not on, the cpufreq directory won't exist

· cd /sys/devices/system/cpu/cpu1; cat online

· if it outputs 1, cpu1 is still up

· echo 0 > /sys/devices/system/cpu/cpu1/online

· shuts a given cpu down

· chmod 444 /sys/devices/system/cpu/cpu1/online
· ensures that the cpu is not restarted again (needs to be finally verified)
Time Command on Android Device
To enable the time command on an android device, the Busybox needs to be installed.

· ARM pre-compiled busybox can be downloaded from http://busybox.net/downloads/binaries/1.19.0/ (the ARMv6l works well on Android).
· Then push it on the phone by

· renaming it 'time': adb push busybox-armv6l /data/local/tmp/time
· make sure it's executable (adb shell chmod 0777 /data/local/tmp/time).
Annex: USB tethering of Android Devices

Requirements

Android device running 2.2 Froyo or higher

Enable USB tethering on Android

- Switch ON "Tethering" option in "Setting->Wireless and Networks.

You can check the IP address of the newly created interface using the "adb" tool from the Android SDK. Once in the Android shell use the "netcfg" command. The IP address should be "192.168.42.129" (Hardcoded in Android source code).

Network structure

 Android terminal

Linux/Win PC

=========================
=========================

|
|
|
|

| <<connection status>>
|
| <<connection status>>
|

| - USB Tethering mode
|
| - Recognizes Android
|

|
|
| terminal as NIC
|

| <<interface>>
| USB Connection
|
|

| - New NIC
|<==============>
| <<interface>>
|

| 192.168.42.129
|
| - New NIC
|

|
|
| IP from Android
|

|
|
| device (DHCP)
|

| <<action>>
|
| <<action>>
|

|- Receive multicast
|
|- Send multicast
|

| packets (pcap)
|
| packets (pcap)
|

=========================
=========================

Play a PCAP
Windows
In order to play a PCAP file on a Windows based host, one can use the following tools:

· http://www.colasoft.com/packet_player/

Unix & Win32/Cygwin
In order to play a pcap file on a Unix based host, one can use the following tools:

· TCP Replay as available here: http://tcpreplay.synfin.net/
· or here as source http://sourceforge.net/projects/tcpreplay/
Android SSH server

An SSH server for Android is SSHDroid available from Google Marketplace. Search for ‘SSHDroid’. Once installed, make sure to configure port 2222 in its settings. For some reason when SSHDroid defaults to port 22 when running in root mode, it is not possible to ssh in. Port 2222 has no such restriction.
Verify Segment Decoding
This tool is attached in source code in verifysegm.zip with compilation instructions for Android.
The tool reads from stdin a repeated sequence

[TOI (32-bit) | length (32-bit) | <sequence of segment bytes>]
where TOI is the segment Transport Object Identifier followed by the length of the decoded segment in bytes and the actual recovered segment data. TOI and length are in network-byte order.

For each such triplet, the output is

<TOI as a human readable integer> <one space> <human readable hex MD5> <newline>

The output is human readable, unlike the input. Exactly one such line is printed to stdout per TOI (assuming the TOI is received a single time).

Example input in hex:

00 00 00 01 00 00 00 03 a0 a1 a2 00 00 00 02 00 00 00 01 b0

(end of file after that.)

This corresponds to two objects, first having TOI 1, and a length of 3 bytes, the file content being (in hex) a0 a1 a2, and the second one being TOI 1 the file containing a single byte b0.

The output produced by that should be:

1 b33326d4c1d789e9651d526f420b6801

2 ec655b6da8b9264a7c7c5e1a70642fa7

and no other line.
� http://en.wikipedia.org/wiki/Regular_expression

� http://lists.gnu.org/archive/html/bug-gnu-utils/2008-12/msg00047.html

� http://lists.gnu.org/archive/html/bug-gnu-utils/2008-12/msg00047.html

- 22/22 -

