Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG-SA4 MBS Adhoc
S4-AHI285
21 June, 2012

Telco
Agenda item:
5
Source:
Qualcomm Incorporated

Title:
Proposed Evaluation Criteria for Selection
Document for
Proposal and Approval
1 Introduction
In S4-120877 a starting point rigorous FEC selection is defined. The exercise is meant to measure the systems resources consumed for FEC recovery on a realistic platform, where system resources include CPU, RAM and I/O between SD and RAM. Generally, it was agreed that the recovery properties of the various codes are similar, and so the current evaluation should run all solutions with the same parameters, and then note any differences in recovery properties between the qualified candidates when running under the same parameters.
This documents provides discussions towards a rigorous FEC evaluation and proposed updates to S4-120877. The updates are provided in track change in the attached document.
2 Towards a Rigorous FEC evaluation
2.1 General

The purpose of the exercise is to compare the performance of the qualified FEC codes and the specifications of how these codes support streaming and file delivery, e.g., how they support sub-blocking or not.

For this purpose, it seems a reasonable comparison may only be made if the same or at least very similar conditions are applied to all three qualified candidates. Below are some issues that could cause comparisons between these three solutions that would be inconclusive or flawed, and potential ways to resolve these issues.

2.2 PCAP files and Error Traces

2.2.1 PCAP files

The PCAP files shall contain encoding symbols and identifying information.

Specifically:

· each packet contains one or multiple symbols
· prefixed with a 4 byte Transport Object Identifier (TOI) and a
· 4 byte FEC Payload ID (includes source block number and encoding symbol ID).

For file delivery, a single object is included in the PCAP file. In addition, the file is associated an FEC-OTI. The FEC-OTI contains:

· Common FEC-OTI, namely transfer length F and symbol size T

· Scheme-specific FEC-OTI, for example information about source blocking and sub-blocking.

The FEC-OTI shall not exceed 16 byte.

For streaming delivery, a sequence of segments is included in the PCAP file. The segments are delivered one after another in an increasing sequence. The information in the FEC-OTI is assumed to be static (i.e. applies for all segments).
The exact storage of the FEC-OTI is tbd. One option is to add it as the first packet of the PCAP file, but then it needs to be ensured that the Markov loss traces does not drop this packet.

2.2.2 Error Traces

2.2.2.1 Generating Error Traces

Pseudo code for the Markov Trace is provided in the attached package. For details see section 2.2.4.
The markov trace file can be executed as follows:

./markovtrace -p | -c <lossrate> <seed> <length> <tracefile>

with:

· -p stands for pedestrian, i.e. 3 km/h, -c for car, i.e. 120 km/h

· lossrate the loss rate in %. Valid numbers are 1, 5, 10, 20

· seed is the seed of the random generator

· length is the size of the loss trace

· tracefile is the name of the tracefile
2.2.2.2 Selecting Error Traces

The error traces need to be restricted compared to the ones considered in the evaluation.

For file delivery, U=3000 users had been simulated. For performance evaluation it is proposed to select S=20 out of the U=3000, but for 1.8 GByte it is S=4. Note: transferring the pcap file of 1.8 GByte over a 1 MBit/s connection with overhead of 25% typically takes about 5 1/2 hours. Further adjustment might have to be done if this is still infeasible.

The selection of the traces is done randomly. It is proposed to select the first S traces, i.e. to generate traces with the seed 0 to S-1.
Preferably, trace files are provided by a single source. The trace size should at least be as long as required by the code with the largest transmission overhead.
Specifically, trace files are necessary of the following length (For details see section 2.5):

	Test Case
	Error conditions
	File size
	S
	N

	LD60
	Markov, 3km/h, 20%
	HD (1.8 GB)
	4
	2000000

	LD108
	Markov, 120km/h, 5%
	Clip (3 MB)
	20
	2700

	LD109
	
	SD (128 MB)
	20
	112000

	LD110
	
	HD (1.8 GB)
	4
	1610000

	LD118
	Markov, 120km/h, 20%
	Clip (3 MB)
	20
	3200

	LD119
	
	SD (128 MB)
	20
	134000

	LD120
	
	HD (1.8 GB)
	4
	2000000

However, decoding shall be done with the number of symbols reported in the overhead results. A truncation utility may be provided or it needs to be integrated in TCPrewrite. This is tbd.
For streaming delivery, T=24 hours had been simulated for the evaluation. For performance evaluation it is proposed to select t=30min out of the T=24 hours. The selection of the 30min traces is such that the first 30min are selected. The encoding/decoding shall be done with the reported K.
As packets are generated every 10 ms, the trace size for each case needs to be 180000.
2.2.3 Applying Error Traces

2.2.3.1 Process
Different solutions might use different packet reception/loss traces, which may lead to different non-comparable results, etc. This aspect was identified in previous evaluations, inconsistencies in packet loss traces affecting results was noted.

To make sure solutions are comparable, exactly the same packet reception/loss traces shall be used. Qualcomm offers to provide and share:

· a binary executable markovtrace to be used for Markov trace generation that generates a trace file based on input parameters. The pseudo-code can be provided along with this. Alternatively, the loss traces may be provided directly. The loss traces are sequences of 0 and 1 characters. For details refer to section 2.2.1.3.
· a custom version of tcprewrite which can read in a source pcap file and a trace file as produced for the simulations and generate an output pcap. The distribution is offered as a patch to tcprewrite. For details refer to section 2.2.1.2.
A package is provided that contains the linux executable of these tools. For details see section 2.2.1.4. However, sufficient information is provided to generate these tools independently and to verify the suitability of the provided tools.
2.2.3.2 TCP Rewrite

2.2.3.2.1 General
In order to introduce loss into a controlled manner reusing the loss traces used for the LD and LS simulations, a slightly modified version of tcprewrite (part of the tcpreplay suite) is available. This tool takes a pcap file as input and transforms it into another altered pcap. The modified tcprewrite has a new option:

 -t, --tracefile=str Input loss/no-loss trace file

where the format of the trace file is:

<Number N of loss/received events in ASCII>[newline]

[0|1]{N,N}

where N will be the maximum number of packets that the input pcap file may have followed on the next line with a string made of characters ‘0’ (packet received) and ‘1’ (packet is lost) of length N.

A truncation utility may be added.
2.2.3.2.2 How to build

Source URL: http://prdownloads.sourceforge.net/tcpreplay/tcpreplay-3.4.4.tar.gz?download
Patch URL: attached to this document tcprewrite-markov-patch.txt included in the package tcprewrite-markov.zip.
Required libraries, tools:

· libpcap

· aclocal (tested with 1.11.3)

· autogen (tested with 1.11.3)

· m4 (tested with 1.4.6)

· patch (tested with 2.5.8)

Build steps are:

1. untar/gunzip file tcpreplay-3.4.4.tar.gz in working directory containing also the patch file tcprewrite-markov-patch.txt.

2. Apply patch: from the same directory, execute:

a. patch –p0 < tcprewrite-markov-patch.txt
3. In directory tcpreplay-3.4.4 execute:

a. aclocal

b. autogen

c. ./configure

d. make

To test tcprewrite:

./src/tcprewrite –t trace-example-158.txt –i ./tests/test.pcap –o out.pcap
2.2.4 Package

Attached to this document is a package tcprewrite-markov.zip that includes:

· PseudoCode-MC.txt: Pseudo-code for the Markov trace

· markovtrace: linux executable that generates a markov trace as described in section 2.2.1.3.

· tcprewrite: linux executable that applies the trace to a pcap file as described in 2.2.1.2.
· examples traces and pcap files as well as a README how to apply the tools.
2.3 Parameter settings
2.3.1 General

For the submission of the candidates the parameters applied for the simulation had been reported for each candidate. The most relevant parameters are
· FEC payload size,
· source block sizes,
· sending strategy.
These parameters influence the overhead performance of the code, but also influence the used system resources in the decoding.
However, in S4-120877 it is also clearly stated that for rigorous evaluation the same parameters as provided in the submission of the candidates should be used, and if not used rationale for such change should be provided and new overhead performance shall be provided. Therefore, it is suitable to investigate both, the parameters in the submission as well as parameters to easily compare among different codes. Therefore, for each candidate solution, sufficient information shall be provided to reuse the same parameter settings for each candidate submission.
This is discussed in more details in section 2.3.2 for the FEC payload size, section 2.3.3 for the source block size and section 2.3.4 for the sending strategy.
2.3.2 FEC payload size

Different solutions might use different sizes within a packet to carry FEC information, i.e., there might be a different size for FEC identifying information and for FEC symbols within a packet. Concern is that having differing amounts of identifying information and symbol information for different solutions will make results incomparable.
For example, transmission bandwidth overhead incurred for each solution would be incomparable. From looking into the evaluation results of the qualified candidates it is conjectured that some candidates took into consideration size for FEC identifying information in packets and other solutions did not.

To make solutions comparable, all solutions shall use the same size for identifying information and the same size for carrying symbols within each packet. Use same overall packet size for FEC information, including same split between size for identifying information and size for symbols, to ensure that packet reception/loss traces are comparable between the candidates.
Therefore, it is proposed to reuse the FLUTE and header definition from the MBMS FEC according to TR26.947, Table 10. The FEC header results the following manner:

· For 498 byte packet sizes, the IP/UDP/FLUTE header is 44 bytes and the FEC symbol information is 456 bytes.
· For 1332 byte packet sizes, the IP/UDP/FLUTE header is 44 bytes and the FEC symbol information is 1288 bytes.
All submitted candidates have used 456 bytes and 1288 bytes as the size of the FEC symbol information within each packet, and this should be maintained also for the rigorous evaluation.

2.3.3 Source block sizes
The different candidates provided results for different source block sizes. Concern is that different source blocks sizes will lead to different transmission overheads to achieve a given reliability of delivery, and transmission overhead is fixed in this evaluation. For example, packet reception/loss traces may have different impact on different solutions transmission overhead if different source block sizes are used, and the comparisons of system resources would be for different transmission overheads, making the system resource comparisons invalid.

At the same time, the chosen source block size may be a differentiator for the different codes and may therefore have been used in the evaluation.

Therefore, it is proposed to evaluate two types of source block sizes for the different use cases:

· the source block size provided in the submission.
· the source block size of the submission of other candidates. The latter is a recommendation, and not mandated.
The source block size can be extracted from the excel sheets attached to the submissions for the different use cases.

2.3.4 Sending Strategy

Especially for file delivery, different solutions might use a different sending strategy. Concern is that different sending strategies will lead to different transmission overheads, for example sending all symbols for source block consecutively or interleaved. For example, packet reception/loss traces may have different impact on different solutions transmission overhead if different source block sizes are used, and the comparisons of system resources would be for different transmission overheads, making the system resource comparisons invalid.

Previous evaluations, some solutions used interleave sending strategy, for others it was unspecified. However, it is expected that interleaving of source blocks in a round robin fashion was applied as this is deployed and used nowadays.

For file delivery, we propose to use fully interleaved FEC block delivery in a round-robin manner, i.e. delivery one packet from the first source block, one from the second, etc. and then start with second packet of the first source block again. From the submissions, it is not clear which strategy is used. Hence, if a different strategy than interleaving was used this should be clarified.
For streaming delivery, each segment is delivered in a single source block. In this case the segments are delivered sequentially, i.e. the segments are not treated as source blocks of one object, but each segment is treated individually.
2.4 Streaming Parameters

For streaming delivery, segment durations of 1 second and 4 seconds had been considered. It is proposed to add a 2 second segment duration at it turns out this may be a suitable operation point. The case is recommended to be tested, but is not mandatory. Note that also the parameters for this case needs to be tested.
2.5 Test Case Parameters

2.5.1 Introduction

The test case parameters are provided below. These should be verified by the candidate submitters.
2.5.2 File Delivery

2.5.2.1 Introduction

The following test case parameters are specified:

· T’ is the FEC payload size. Typically T’ also represents the symbol size unless multiple symbols are added

· Kt is the total number of source symbols

· Z is the total number of source blocks

· O is the overhead in percent according to the table provided by the proponents

· N is the resulting number of total symbols defined as Kt*(1+O/100)

· SeSt is the sending strategy with IL = Interleaved, n/a not applicable and SQ sequential
It is further expected that of the Z source blocks
· the first Z1 have source block size K1 = ceil(Kt/Z)

· the remaining Z2 have source block size K2 = floor(Kt/Z)
· and Z1 = Kt – K2*Z and Z2=Z-Z1.
2.5.2.2 RS + LDPC Code

	Test Case
	Error conditions
	File size
	T’
	Kt
	Z
	O
	N
	SeSt

	LD60
	Markov, 3km/h, 20%
	HD (1.8 GB)
	1288
	1465402
	174
	27.60
	1869853
	IL

	LD108
	Markov, 120km/h, 5%
	Clip (3 MB)
	1288
	2439
	1
	7.07
	2611
	n/a

	LD109
	
	SD (128 MB)
	1288
	104207
	13
	6.66
	111085
	IL

	LD110
	
	HD (1.8 GB)
	1288
	1465402
	174
	6.83
	1565489
	IL

	LD118
	Markov, 120km/h, 20%
	Clip (3 MB)
	1288
	2439
	1
	29.18
	3151
	n/a

	LD119
	
	SD (128 MB)
	1288
	104207
	13
	28.31
	133708
	IL

	LD120
	
	HD (1.8 GB)
	1288
	1465402
	174
	28.64
	1885093
	IL

With an adaptation to the correct file sizes, the following parameters apply

	Test Case
	Error conditions
	File size
	T’
	Kt
	Z
	O
	N
	SeSt

	LD60
	Markov, 3km/h, 20%
	HD (1.8 GB)
	1288
	1500571
	174
	27.60
	1914729
	IL

	LD108
	Markov, 120km/h, 5%
	Clip (3 MB)
	1288
	2443
	1
	7.07
	2616
	n/a

	LD109
	
	SD (128 MB)
	1288
	104207
	13
	6.66
	111085
	IL

	LD110
	
	HD (1.8 GB)
	1288
	1500571
	174
	6.83
	1603060
	IL

	LD118
	Markov, 120km/h, 20%
	Clip (3 MB)
	1288
	2443
	1
	29.18
	3156
	n/a

	LD119
	
	SD (128 MB)
	1288
	104207
	13
	28.31
	133708
	IL

	LD120
	
	HD (1.8 GB)
	1288
	1500571
	174
	28.64
	1930334
	IL

2.5.2.3 Supercharged Code

	Test Case
	Error conditions
	File size
	T’
	Kt
	Z
	O
	N
	SeSt

	LD60
	Markov, 3km/h, 20%
	HD (1.8 GB)
	1288
	1500571
	25
	27.2413
	1909346
	??

	LD108
	Markov, 120km/h, 5%
	Clip (3 MB)
	1288
	2443
	1
	6.9317
	2612
	n/a

	LD109
	
	SD (128 MB)
	1288
	104207
	2
	5.9741
	110429
	??

	LD110
	
	HD (1.8 GB)
	1288
	1500571
	25
	6.0428
	1591248
	??

	LD118
	Markov, 120km/h, 20%
	Clip (3 MB)
	1288
	2443
	1
	28.997
	3151
	n/a

	LD119
	
	SD (128 MB)
	1288
	104207
	2
	26.8264
	132162
	??

	LD120
	
	HD (1.8 GB)
	1288
	1500571
	25
	27.0147
	1905945
	??

2.5.2.4 6330 Code
	Test Case
	Error conditions
	File size
	T’
	Kt
	Z
	O
	N
	SeSt

	LD60
	Markov, 3km/h, 20%
	HD (1.8 GB)
	1288
	1500571
	53
	26.85
	1903474
	IL

	LD108
	Markov, 120km/h, 5%
	Clip (3 MB)
	1288
	2443
	1
	6.92
	2612
	n/a

	LD109
	
	SD (128 MB)
	1288
	104207
	4
	6.25
	110720
	IL

	LD110
	
	HD (1.8 GB)
	1288
	1500571
	53
	6.30
	1595106
	IL

	LD118
	Markov, 120km/h, 20%
	Clip (3 MB)
	1288
	2443
	1
	28.80
	3147
	n/a

	LD119
	
	SD (128 MB)
	1288
	104207
	4
	27.35
	132708
	IL

	LD120
	
	HD (1.8 GB)
	1288
	1500571
	53
	27.50
	1913228
	IL

2.5.3 Streaming Delivery

2.5.3.1 Introduction

The following test case parameters are specified:

· T’ is the FEC payload size. Typically T’ also represents the symbol size unless multiple symbols are added

· N’ is the number of total symbols per source block

· K is the applied source block size

· G is the total number of symbols in each packet

· The media rate results from the use of K and is given in kbit/s

2.5.3.2 RS + LDPC Code

	Test Case
	Error conditions
	Segment Duration
	T’
	N’
	K
	G
	Media
Rate

	LS21
	Markov, 3km/h, 20%
	1
	1288
	100
	37
	1
	381.25

	LS49
	
	2
	1288
	200
	??
	1
	??

	LS24
	
	4
	1288
	400
	247
	1
	636.27

	LS33
	Markov, 120km/h, 5%
	1
	1288
	100
	85
	1
	875.84

	LS50
	
	2
	1288
	200
	??
	1
	??

	LS36
	
	4
	1288
	400
	363
	1
	935.09

	LS45
	Markov, 120km/h, 20%
	1
	1288
	100
	65
	1
	669.76

	LS51
	
	2
	1288
	200
	??
	1
	??

	LS48
	
	4
	1288
	400
	291
	1
	749.62

2.5.3.3 Supercharged Code

	Test Case
	Error conditions
	Segment Duration
	T’
	N’
	K
	G
	Media
Rate

	LS21
	Markov, 3km/h, 20%
	1
	1288
	100
	36
	1
	370.94

	LS49
	
	2
	1288
	200
	??
	1
	??

	LS24
	
	4
	1288
	400
	246
	1
	633.70

	LS33
	Markov, 120km/h, 5%
	1
	1288
	100
	85
	1
	875.84

	LS50
	
	2
	1288
	200
	??
	1
	??

	LS36
	
	4
	1288
	400
	364
	1
	937.66

	LS45
	Markov, 120km/h, 20%
	1
	1288
	100
	64
	1
	659.46

	LS51
	
	2
	1288
	200
	??
	1
	??

	LS48
	
	4
	1288
	400
	291
	1
	749.62

2.5.3.4 6330 Code
	Test Case
	Error conditions
	Segment Duration
	T’
	N’
	K
	G
	Media
Rate

	LS21
	Markov, 3km/h, 20%
	1
	1288
	100
	38
	1
	391.55

	LS49
	
	2
	1288
	200
	103
	1
	530.66

	LS24
	
	4
	1288
	400
	246
	1
	633.70

	LS33
	Markov, 120km/h, 5%
	1
	1288
	100
	86
	1
	886.14

	LS50
	
	2
	1288
	200
	178
	1
	917.06

	LS36
	
	4
	1288
	400
	364
	1
	937.66

	LS45
	Markov, 120km/h, 20%
	1
	1288
	100
	64
	1
	659.46

	LS51
	
	2
	1288
	200
	139
	1
	716.13

	LS48
	
	4
	1288
	400
	291
	1
	749.62

2.5.3.5 Proposal

For streaming delivery it seems apparent that the differences in K are extremely small and probably result from statistical differences in the Markov channel model. It is proposed to use a harmonized set of values by taking the majority of the results as proposed below. It is also suggested to verify these values with the ideal code based on the common Markov simulation tool.
	Test Case
	Error conditions
	Segment Duration
	T’
	N’
	K
	G
	Media
Rate

	LS21
	Markov, 3km/h, 20%
	1
	1288
	100
	37
	1
	381.25

	LS49
	
	2
	1288
	200
	103
	1
	530.66

	LS24
	
	4
	1288
	400
	246
	1
	633.70

	LS33
	Markov, 120km/h, 5%
	1
	1288
	100
	85
	1
	875.84

	LS50
	
	2
	1288
	200
	178
	1
	917.06

	LS36
	
	4
	1288
	400
	364
	1
	937.66

	LS45
	Markov, 120km/h, 20%
	1
	1288
	100
	64
	1
	659.46

	LS51
	
	2
	1288
	200
	139
	1
	716.13

	LS48
	
	4
	1288
	400
	291
	1
	749.62

2.6 Device Evaluation
2.6.1 Requirements and Conditions

The following requirements are imposed for a device:

· The device shall be easily accessible

· The device shall have network access

· The device should run in performance mode, i.e. root access is required. This aspect needs further consideration and tests to what extent a non-rooted device provide variable performance based on the environment used. Further tests are necessary to decide on whether the evaluation requires rooting the device.
2.6.2 Device

The proposed device and HW should be used, i.e.
· Samsung Galaxy S2 (GT-I9100P) Smartphone, running Android 2.3.4. The processor is a Dual-core Exynos 4210 1.2GHz processor ARM Cortex-A9. It may be necessary to specify a very specific version. Specifically it should be a device that this NOT subsidized by a specific carrier.
· Samsung MB-MSBGA Flash memory card - 32 GB microSDHC - 1 x microSDHC SD Card (Class 10) – available on Amazon.
2.6.3 Root access
Here's one procedure to root the S2: http://galaxys2root.com/galaxy-s2-root/how-to-root-galaxy-s2-newworks-on-all-galaxy-s2-variants/.

Once the phone is rooted, to turn on performance mode and disable the second CPU core:

· cd /sys/devices/system/cpu/cpu0/cpufreq

· cat scaling_governor

· this will tell the current mode (on-demand or performance)

· echo performance > scaling_governor

· turn on performance mode. echo ondemand to turn off
· NOT a sticky command i.e. value resets to ondemand after reset

· note: performance mode will keep it at 1.5GHz, even at idle

· In ondemand mode - at idle, without a data transfer or anything else running on the device, cpu0 should be running at much lower speed

· cat scaling_cur_freq

· display current clock frequency in kHz

· cd /sys/devices/system/cpu/cpu1/cpufreq

· to check the settings for cpu1

· NOTE: if core 1 is not on, the cpufreq directory won't exist

· stop mpdecision OR start mpdecision
· to stop or start second core

· can run this command from any directory

· if the second core was already up when you did stop mpdecision, you'll have to shut it down manually

· cd /sys/devices/system/cpu/cpu1; cat online

· if it outputs 1, cpu1 is still up

· echo 0 > /sys/devices/system/cpu/cpu1/online

· shuts a given cpu down
2.7 Performance Measurement

2.7.1 Overview

Performance measurements needs most suitable be done in a way that neither modifications in the FEC executable nor specific compilation needs to be done, for example compilation to enable debug mode.
2.7.2 Considered Tools

2.7.2.1 Overview

We are currently in the process of checking and evaluating different tools to measure CPU performance and memory usage. Two tools are presented below in the order of priority using them:
· Unix command time
· ARM Development Studio 5 Streamline

2.7.2.2 Unix command time
The unix "time" utility is used to measure both CPU and memory usage of the decoding process. Busybox 1.20.1
 contains a version of "time" which can be used on Android with a small caveat that will be described below.

2.7.2.3 ARM DS5 Streamline
ARM Development Studio 5 provides a performance analyser called Streamline. System level timeline analysis can be obtained with the ability to generate focused (smaller timescale) profiling reports. DS5 has integration with Android and Linux which both need the gator driver and daemon to interface the device with the PC hosted DS5 tools.

DS5 is available in 3 different editions: Community, which is free and targets Android development, Basic and Professional (http://www.arm.com/products/tools/software-tools/ds-5/index.php?tab=Specification). The two last editions have a 30-day evaluation license.

The Community edition reportedly works with the Samsung Galaxy S2 running ICS, and even Gingerbread but with some workaround (http://forums.arm.com/index.php?/topic/15575-arm-ds-5-tutorial-for-android/).

Ready-to-run Linux kernel with gator support are available directly from ARM for some widely available Cortex-A8 development boards like the Beagleboard xM. See http://www.arm.com/products/tools/software-tools/ds-5/ds-5-downloads.php.

Assessment of DS5 itself and which device interface operates well with it if selected need to be done.
2.7.3 Process for streaming evaluation
2.7.3.1 General Process
The following describes the process for using “time” for a CPU and memory performance measurements for streaming services.

It is assumed that the device is connected through a lossless network interface to read pcap data into the device. Details on how to play a pcap file from a host and to enable USB tethering on Android are provided in S4-AHI281, section 8 and 9, respectively.
On the device, there are two tools,

· a decoding application, different for each candidate code, which can run on the Android command line, and

· a verification tool, which is trivial to implement and completely specified here.

The decoding executable fetches the data from the network in UDP packets with the format defined in section 2.2.1.

The decoding application writes the successfully decoded segments to stdout with a specific format. Each emitted segment has a 4-byte TOI and a 4-byte size prefixed, and then the data written to stdout.

Once all segments have been sent, a special packet with TOI 0xffffffff shall be sent over the network to mark the end of the stream. Upon reception of that packet, the decoding application finishes all pending decodes, writing the results, and then terminate.

A separate tool can then read out the data from the decoding application and verify its integrity. That is, compute which segments have been successfully decoded, and compute their md5 sum, and print a list to stdout. For each successfully decoded output, one human-readable line is printed to stdout:

<32 bytes hex md5> <space> <TOI in decimal representation>

Note that that separate decoding verification tool is independent of the codec to be used.

A pseudo-code implementation of the verification tool is as follows:
 while not end_of_file(stdin):

 toi = uint32_from_bytes(read(stdin, 4))

 segment_size = uint32_from_bytes(read(stdin, 4))

 segment = read(stdin, segment_size)

 check = md5_compute(segment)

 print("%x %d", check, toi)
2.7.3.2 Performance Measurement with time
Busybox 1.20.1
 provides a "time" executable which is to be used for measuring the performance of the FEC decoding. If "decoder" is the FEC decoding application, and "verify" the MD5 verification tool, the following is to be run:

time -v decoder –fec-oti <fec_oti> | verify > outcome.txt

If the FEC-OTI is included as a packet, then the following is sufficient:

time -v decoder | verify > outcome.txt
The output will then be akin to the following:

 Command being timed: "decoder"

 User time (seconds): 1.49
 System time (seconds): 0.36
 Percent of CPU this job got: 73%

 Elapsed (wall clock) time (h:mm:ss or m:ss): 0m 2.52s

 Average shared text size (kbytes): 0

 Average unshared data size (kbytes): 0

 Average stack size (kbytes): 0

 Average total size (kbytes): 0

 Maximum resident set size (kbytes): 165456
 Average resident set size (kbytes): 0

 Major (requiring I/O) page faults: 1

 Minor (reclaiming a frame) page faults: 21740

 Voluntary context switches: 9659

 Involuntary context switches: 10442

 Swaps: 0

 File system inputs: 0

 File system outputs: 0

 Socket messages sent: 0

 Socket messages received: 0

 Signals delivered: 0

 Page size (bytes): 4096

 Exit status: 0
The relevant entries here are "system time", "user time" (the sum of which is to be reported as the processing cost), and "Maximum resident set size". The memory usage to be reported is 1/4 of that given as the "Maximum resident set size" in an unpatched busybox 1.20.1. The reason for this ominous division by 4 is that busybox has a bug which causes it to overestimate memory usage by a factor of 4, just like the GNU time utility from which it is presumably inheriting this mistake. See the bug report here
.

2.7.3.3 Performance Data Measurement

The following performance data measurement is proposed:

· Generate the numbers from above for the considered test case
· Generate the numbers from above for a zero loss trace

· Report the following numbers for each test case and the zero loss trace:

· U: User time (seconds)

· S: System time (seconds)

· P: Percent of CPU this job got
· Elapsed (wall clock) time (h:mm:ss or m:ss):
· M: Maximum resident set size (kbytes)
· Generate the following numbers for performance evaluation based on the above results and the segment duration D (in seconds), the media bitrate R (in kBit/s), and the duration of the media data t (in seconds):
· Average decoding speed (in MBit/s): R*t/(1000*(U+S))
· Average decoding latency (in ms): D*(1000*(U+S))/t
· Peak memory usage (in MBytes): M/4096

2.7.4 Process for file delivery

2.7.4.1 General Process

The following describes the process for using “time” for a CPU and memory performance measurements for download delivery services.

This is an initial draft and requires more considerations:
It is assumed that the device is connected through a lossless network interface to read pcap data into the SD card of the device. Details on how to play a pcap file from a host, read data into the SD card and to enable USB tethering on Android are provided in S4-AHI281, section 8 and 9, respectively. As reading from the SD card may be a bottleneck in the process in case the incoming data is not appropriately stored, the exact utility that stores the data to the SD card is tbd and may be optimized, especially when data is interleaved.
On the device the same decoding application as for streaming is started, but the data is not read from the network interface, but the SD card with the format defined in section 2.2.1. The decoding application writes the successfully decoded source blocks to the SD card to regenerate the file.
As the read/write operations are relevant, it needs to be checked if the influence of those operations can be minimized or the performance measurement can be separated.

2.7.4.2 Performance Measurement with time
Similar performance data may be collected as for streaming delivery, i.e. to apply

time -v decoder pcapfile decodedfile
Details are tbd
2.7.4.3 Performance Data Measurement
The following performance data measurement is proposed:

· Generate the numbers from above for the considered test case

· Generate the numbers from above for a zero loss trace to understand the influence of the read/write operations

· Report the following numbers for each test case and the zero loss trace:

· U: User time (seconds)

· S: System time (seconds)

· P: Percent of CPU this job got

· Elapsed (wall clock) time (h:mm:ss or m:ss):

· M: Maximum resident set size (kbytes)

· Generate the following numbers for performance evaluation based on the above results and the object size F (in bytes):

· Average decoding speed (in MBit/s): F*8/(1000000*(U+S))

· Decoding time (in s): U+S
· Peak memory usage (in MBytes): M/4096
2.8 Differentiation
Using all the same parameters may not allow different candidates to show off what they can do that may be difficult for other candidates. Concern is that the constraints are so tight that highlighting a different perhaps more appealing way of doing things at a system level, for example to provide a better user experience, or use less systems resources, are not within scope.

This aspect was not relevant for the evaluations for the submission, since system resources were not directly comparable. However, this may be relevant when rigorous system resources are evaluated. It is proposed to allow solutions to propose and show system resources results for configurations not in the basic set.
2.9 Verification

On a high-level, it seems that by each proponent providing
· the decoder executable for Android with the appropriate I/O interfaces,
· error free pcap traces for the different test case

verification based on the available tools can be done independently.
More details will be defined in the next stage.
3 Summary of open issues

Based on this document, the following aspects still needs clarification:

· The storage of the FEC-OTI

· The handing of the FEC-OTI to the device

· The handling of the end of stream marker, which should also be added to the tcprewrite, i.e. customize tcprewrite to enable handing over FEC-OTI error free, truncate and add end of sequence marker after truncation.

· Provisioning of markov traces

· Truncation of the pcap files

· Verification of the test case parameters in section 2.5.

· Verification of the streaming performance measurement in section 2.7.3.
· Verification of the "time" utility for performance measurements or checking the alternative using the ARM DS5 utilities, if time is not appropriate.
· Detailed definition of the download delivery case in section 2.7.4.
4 Proposal

It is proposed to use the procedures in this document for the code evaluation and to integrate in an updated version of S4-120877 document.
It is also proposed to update any results reported in the submission in case any new information is observed from this rigorous evaluation, e.g. different Markov channels, object sizes, etc.

Also it is proposed to move forward with the next steps to clarify all open points except for the verification details during the call on July 11th, 2012.
� http://www.busybox.net/

� http://www.busybox.net/

� http://lists.gnu.org/archive/html/bug-gnu-utils/2008-12/msg00047.html

- 6/16 -

