Page 4
Draft prETS 300 ???: Month YYYY
3GPP TSG-SA4 AHI Meeting	S4-AHI188
02 – 04 March 2010
Aachen, Germany

	Agenda item:
	4

	Source:
	Qualcomm Incorporated

	Title:
	Adaptive HTTP Streaming: Usage of the 3GPP File Format – Summary of Discussions of day 1

	Document for
	Discussion and Approval

Introduction
During the MBS adhoc meeting the usage of the 3GP file format for adaptive HTTP Streaming had been discussed based on input documents:
· S4-AHI148 from Apple.
· S4-AHI154 from Ericsson
· S4-AHI165 from Nokia.
· S4-AHI171 from Qualcomm
Offline discussion reached a high-level agreement. This document attempts to provide specification text to reflect this agreement. Two remaining alternatives are discussed. This document is guided by the following high-level agreement:
· Each fragment contains relative timing information that aligns the tracks within it (Ericsson proposal).
· Each segment has at the front a segment index, which provides the following information (merge Qualcomm and Nokia proposal):
· the presentation time of each fragment (the earliest track sample time in that track fragment? or consistently for the same track?) [dave thinks we'd identify a reference timing track by ID, as the cleanest]
· the location of that fragment relative to the segment-index-box (i.e. segment-relative data addressing)
· whether that fragment has at least one random-access point in all tracks (boolean 'and' across the tracks)
· The presentation times are aligned across representations; and it is recommended that the first segment of a period have the value 0.
· The segment index is 'plain' and non-hierarchical;
· When stored as separate files, each segment should contain segment compatibility ('styp') information also (Apple proposal, Dave's part of the compromise :-))
Notes:
· in the degenerate case where a period has only one segment and that segment has only one fragment, the segment index information is not needed
· in the degenerate case where the segments across representations are aligned, maybe we don't need the segment index (but it still helps)
· all these boxes use (in some sense) relative timing and byte-addressing, and are 'safe' to be present in concatenated files on either client or server (or in recordings)
· the ‘edit list’ ‘alignment info’ is not needed when all the tracks are aligned
This document provides
· the definition of the Segment Type box.
· the definition of the Track Fragment Adjustment Box ‘tfad’.
· the definition of the Segment Index Box ‘sidx’.
· the Adaptive Streaming profile of the 3GP file format has been updated.
· the specification text for the media segments and the usage of the 3GP File Format has been updated accordingly.
· a proposal for the Usage of the 3GPP FF for Adaptive HTTP-Streaming.
Segment Type Box
Introduction
It is possible in HTTP streaming to form segment files that are not fully compliant 3GP files (e.g. they do not contain a movie box). If such segments are stored in separate files (e.g. on a standard HTTP server), then it is strongly recommended that those ‘segment files’ start with a segment-type box, to enable identification of those files, and declaration of the specifications with which they are compliant.
A segment type box is formatted exactly the same an 'ftyp' box, except it takes the signature 'styp'. The brands within it should include the same brands that were included in the ftyp box that preceded the moov box, and may also include additional brands to indicate the compatibility of this segment with various specification(s).
Valid segment type boxes must be first in a segment. It may be removed if segments are concatenated (e.g. to form a full 3GP file) but this is not required. Segment type boxes that are not first in their files should be ignored.
Note: brands for HTTP streaming are defined in XXX.
Definition
Box Type:	`styp’
Container: 	Segment
Mandatory: 	Yes
Quantity:	Exactly one

A media-segment structured to this part of this specification may be compatible with more than one detailed specification, and it is therefore not always possible to speak of a single ‘type’ or ‘brand’ for the segment. This means that the utility of the file name extension and mime type are somewhat reduced.
This box must be placed as early as possible in the segment file. It identifies which specification is the ‘best use’ of the file, and a minor version of that specification; and also a set of other specifications to which the file complies. Readers implementing this format should attempt to read files that are marked as compatible with any of the specifications that the reader implements. Any incompatible change in a specification should therefore register a new ‘brand’ identifier to identify files conformant to the new specification.
The minor version is informative only. It does not appear for compatible-brands, and must not be used to determine the conformance of a file to a standard. It may allow more precise identification of the major specification, for inspection, debugging, or improved decoding.
The type ‘3gm1’ (3GPP Media Segment) is defined in this section of this specification, as identifying segments that conform to the first version of the 3GPP media segment.
More specific identifiers can be used to identify precise versions of specifications providing more detail. This brand should not be used as the major brand; this base file format should be derived into another specification to be used.
Segments would normally be externally identified (e.g. with a file extension or mime type) that identifies the ‘best use’ (major brand), or the brand that the author believes will provide the greatest compatibility.
Syntax
aligned(8) class FileTypeBox
	extends Box(‘styp’) {
	unsigned int(32) major_brand;
	unsigned int(32) minor_version;
	unsigned int(32) compatible_brands[]; // to end of the box
}
Semantics
This box identifies the specifications to which this segment complies.
Each brand is a printable four-character code, registered with ISO, that identifies a precise specification.
major_brand – is a brand identifier
minor_version – is an informative integer for the minor version of the major brand
compatible_brands – is a list, to the end of the box, of brands
Track Fragment Adjustment Box
Introduction
We propose to use edit-list style functionality in movie fragments. For clarity these are called track fragment adjustment boxes in this document, but for simplicity when splicing and splitting files the syntax is identical to that of edit lists.
Synchronization of tracks in a movie fragment
Synchronization of tracks in movie fragment is done in the same way as for edit lists in movie boxes. A piece of the media of one of the tracks can be removed (or its playback delayed) generating synchronization between tracks.
Detailed syntax and semantics
Note: The syntax described below is identical to that of edit-lists, but are instead applied to the first movie fragment downloaded in a sequence.
Track Fragment Adjustment Box
Definition
Box Type:	‘tfad’
Container:	Track fragment box (‘traf’)
Mandatory:	No
Quantity:	Zero or one.
The Track Fragment Adjustment Box, if present, should be positioned after the Track Fragment Header Box and before the first Track Fragment Run box. The Track Fragment Adjustment Box is a container for the Track Fragment Media Adjustments.
Syntax
aligned(8) class TrackFragmentAdjustmentBox extends Box(‘tfad’) {
}
Track Fragment Media Adjustment Box
Definition
Box Type:	‘tfma’
Container:	Track fragment adjustment box (‘tfad’)
Mandatory:	No
Quantity:	Zero or one.
This box provides explicit time line offsets. By indicating ‘empty’ time, or by defining a ‘dwell’, the offset can advantageously delay the playback time of the media in the track so that media in different tracks can be synchronized. Alternatively, the media_time may be used to discard part of the “earlier” tracks.
Syntax
aligned(8) class TrackFragmentMediaAdjustmentBox extends FullBox(‘tfma’, version, 0) {
 unsigned int(32) entry_count;
 for (i=1; i <= entry_count; i++) {
 if (version==1) {
 unsigned int(64) segment_duration;
 int(64) media_time;
 } else { // version==0
 unsigned int(32) segment_duration;
 int(32) media_time;
 }
 int(16) media_rate_integer;
 int(16) media_rate_fraction = 0;
 }
}

Semantics
version is an integer that specifies the version of this box (0 or 1)
entry_count is an integer that gives the number of entries in the following table
segment_duration is an integer that specifies the duration of this adjustment segment in units of the timescale in the Movie Header Box
media_time is an integer containing the starting time within the media of this adjustment segment (in media time scale units, in composition time). If this field is set to –1, it is an empty edit. The last adjustment in a track shall never be an empty edit. Any difference between the duration in the Movie Header Box, and the track’s duration is expressed as an implicit empty edit at the end.
media_rate specifies the relative rate at which to play the media corresponding to this adjustment segment. If this value is 0, then the adjustment is specifying a ‘dwell’: the media at media-time is presented for the segment-duration. Otherwise this field shall contain the value 1.
Segment Index Box
Summary
The following is introduced:
· A new box, referred to as Segment Index box ‘sidx’. In a 3GP file, multiple of such boxes may be present. The box should be placed right before the first ‘moof’ that it references.
· This box should be added to TS26.244.
In the following we proposed two alternatives for the Segment Index Box.
· Alternative 1 assumes that pointers are provided to fragments only.
· Alternative 2 provides accurate pointers to different target boxes. An new box is defined according to S4-AHI165. THIS NEEDS TO BE CAREFULLY CHECKED.
Segment Index Box
Definition
Box Type:	‘sidx’
Container:	File
Mandatory:	No
Quantity:	Any number
The Segment Index Box provides a set of time and byte offset indices that associate certain regions of the file with certain time intervals of the presentation.
Syntax
aligned(8) class SegmentIndexBox
extends FullBox(‘sidx’, version, 0) {
 unsigned int(32) time_reference_track_ID;
 unsigned int(32) number_of_elements;
 if(version==1) {
 unsigned int(64) first_element_offset;
 unsigned int(64) first_element_time;
 } else {
 unsigned int(32) first_element_offset;
 unsigned int(32) first_element_time;
 }

 for(i=1; i <= number_of_elements; i++)
 {
 if(version==2) {
 bit (1) random_access_flag;
 unsigned int(63) length;
 unsigned int(64) deltaT;
 }else{
 bit (1) random_access_flag;
 unsigned int(31) length;
 unsigned int(32) deltaT;
 }
 }
}
Note that three versions of the box are defined in which the field sizes are 32 bits for both initial offsets and deltas (version 0), 64 bits for initial offsets and 32 bits for deltas (version 1) and 64 bits for both initial offsets and deltas (version 2).
Semantics
time-reference_track_id: indicates the track with respect to which the time offsets in this index are specified.
number_of_elements: the number of elements indexed by this Segment Index Box.
first_element_offset: The byte offset of the first indexed element relative to the first byte in the file after the end of this Segment Index Box.
first_element_time: The start time of the first indexed element, using the timescale specified in the Media Header box of the track identified by the time_reference_track_id.
random_access_flag: One if the presentation time spanned by the element includes a random access point. Zero otherwise.
length: The length of the indexed element in bytes.
deltaT: The difference in terms of the timescale specified in the Media Header box of the track identified by the time_reference_track_id between the start time of this element and the start time of the next element.
Segment Index Box (Alternative 2 together with 4.4)
Definition
This alternative had been discussed, as there may exist some issues with RAP pointer in moof. However, this needs further checking and adds quite some complexity. It is combined with clause 4.4.
Definition
Box Type:	‘sidx’
Container:	File
Mandatory:	No
Quantity:	Any number
The Segment Index Box provides a set of time and byte offset indices that associate certain regions of the file with certain time intervals of the presentation. The ‘sidx’ includes a targettype field, which indicates the type of the referenced data. For example,
· a Segment Index box with target_type “moof” provides an index to Movie Fragments in terms of both time and byte offsets.
· A Segment Index Box with target_type “sidx” of Segment Index Box can be used to construct a hierarchical time index, allowing users of the file to quickly navigate to the required portion of the index. The Segment Index also provides global timing for each track in the segment within the ‘sidx’.
· A Segment Index Box with target_type “tftp” of Track Fragment Time and Position Box can be used to index, allowing users of the file to quickly navigate to the required portion of the index. The Segment Index also provides global timing for each track in the segment within the ‘sidx’.
Syntax
aligned(8) class SegmentIndexBox
extends FullBox(‘sidx’, version, 0) {
 unsigned int(32) time_reference_track_ID;
 unsigned int(32) number_of_elements;
 if(version==1) {
 unsigned int(64) first_element_offset;
 unsigned int(64) first_element_time;
 } else {
 unsigned int(32) first_element_offset;
 unsigned int(32) first_element_time;
 }

 for(i=1; i <= number_of_elements; i++)
 {
 if(version==2) {
 bit (1) random_access_flag;
 unsigned int(63) length;
 unsigned int(64) deltaT;
 }else{
 bit (1) random_access_flag;
 unsigned int(31) length;
 unsigned int(32) deltaT;
 }
 }
}
 Semantics
target_type: is the type of the box data referenced by this Segment Index box. This can be either a moof box (“moof”) or Segment Index (“sidx”) box or a Track Fragment Time and Position (“sidx”) Box.
time-reference_track_id: indicates the track with respect to which the time offsets in this index are specified.
number_of_elements: the number of elements indexed by this Segment Index Box.
first_element_offset: The byte offset of the first indexed element relative to the first byte in the file after the end of this Segment Index Box.
first_element_time: The start time of the first indexed element, using the timescale specified in the Media Header box of the track identified by the time_reference_track_id.
random_access_flag: One if the presentation time spanned by the element includes a random access point. Zero otherwise.
length: The length of the indexed element in bytes.
deltaT: The difference in terms of the timescale specified in the Media Header box of the track identified by the time_reference_track_id between the start time of this element and the start time of the next element.
Track Fragment Time and Position Box
Definition
This box gives information about a specific track in a set of moof boxes. It provides information about its timing as well as the contained Random Access Points, if any.
Syntax
aligned(8) class TrackFragmentTimePositionBox extends FullBox(‘tftp’, version, 0) {
	unsigned int(32) track_ID;
	const unsigned int(26) reserved = 0;
	unsigned int(2) length_size_of_traf_num;
	unsigned int(2) length_size_of_trun_num;
	unsigned int(2) length_size_of_sample_num;
	unsigned int(2) length_size_of_time_offset;
	unsigned int(32) number_of_moof;
	for (i=1; i <= number_of_moof; i++) {
		unsigned int(32) sequence_number;
		if (version==1) {
			unsigned int(64) presentation_time;			
			int(64) relative_moof_offset;
		} else {
			unsigned int(32) presentation_time;			
			int(32) relative_moof_offset;
		}
		unsigned int(32) number_of_raps;
		for (j=1;j<=number_of_raps;j++) {
			unsigned int((length_size_of_traf_num+1) * 8) traf_number;
			unsigned int((length_size_of_trun_num+1) * 8) trun_number;
			unsigned int((length_size_of_sample_num+1) * 8) sample_number;
			unsigned int((length_size_of_time_offset+1) * 8) time_offset;
		}
	}
}

Semantics
track_ID: is an integer identifying the track ID
reserved: reserved for future use
length_size_of_traf_num: indicates the length in bytes of the traf_number field minus 1
length_size_of_trun_num: indicates the length in bytes of the trun_num field minus 1
length_size_of_sample_num: indicates the length in bytes of the sample_num minus 1
length_size_of_time_offset: indicates the length in bytes of the time_offset minus 1
number_of_moof: is an integer that indicates the number of moof boxes described in this box
presentation_time: is a 32 or 64 bit integer that gives the presentation time of the first sample of this track fragmen in this moof box.
sequence_number:is the sequence number of the referenced movie fragment
relative_moof_offset: is a 32 or 64 bit integer that gives the offset of the start of the moof box relative to the start of the containing MovieFragmentTimePositionBox.
number_of_raps: gives the number of Random Access Points described for the referenced moof box

traf_number: indicates the traf number that contains the random accessible sample. The number ranges from 1 in each moof.
trun_number: indicates the trun number that contains the random accessible sample. The number ranges from 1 in each traf.
sample_number: indicates the sample number that contains the random accessible sample. The number ranges from 1 in each trun.
time_offset: indicates the time offset of the RAP with regards to the indicated presentation_time of the moof box
Update of the Adaptive Streaming Profile
Summary
TS26.244 specifies the 3GP Adaptive-Streaming profile. The new box(es) shall be permitted to be included in the Adaptive-Streaming profile.
Section 3.2 provides the update using ‘sidx’ according to the definition in section 2.2 and the ‘tfdt’. Section 3.3 provides the update using ‘sidx’ according to the definition in section 2.3.
Update with ‘sidx’ and ‘tfdt’
[bookmark: _Toc248119120]5.4.9	Adaptive-Streaming profile
The 3GP Adaptive-Streaming profile is branded ‘3gh9’. It is used to label 3GP files that are primarily suitable for adaptive file-based streaming.
The following constraints shall apply to 3GP files conforming to Adaptive-Streaming profile:
· the ‘moov’ box shall be placed in the beginning of the file right after the ‘ftyp’ box and a possibly present ‘pdin’ box;
· all movie data shall be contained in Movie Fragments, i.e. the ‘moov’ box shall not contain any samples.
· the ‘moov’ box shall contain an ‘mvex’ box to indicate the presence of movie fragments
· the ‘moov’ box shall be followed by one or more ‘moof’ and optionally ‘mdat’ box pairs.
· each ‘moof’ box shall contain at least one track fragment.
· each ‘traf’ box may contain a ‘tfad’ box.
· one or multiple ‘sidx’ boxes may be present. If present, any ‘sidx’ box should be placed right before the first ‘moof’ that it references.
Usage of the 3GP File Format
It is proposed to update section 12.4 in the document S4-100185 as follows.
12.4	Usage of the 3GP File Format
12.4.1	Instantation of Segments
The Media Presentation framework as introduced in section 12.2 is instantiated in this section using the 3GP File Format as specified in [r2].
12.4.2	Segment Types and Formats
12.4.2.1	Segment Types
Adaptive HTTP streaming defines a segment format that is used in the delivery of media data over HTTP. A segment shall contain one or more boxes in accordance with the boxed structure of the ISO-base media file format [r1].
Two different segment types are defined in adaptive HTTP streaming.
1. Initialisation Segment with a MIME type “video/3gpp”.
2. Media Segment with a MIME type “video/vnd.3gpp.segment”.
NOTE: the MIME type for Media Segments is defined in Annex C.5.1.
The Initialisation Segment shall be present in the context of this specificaton. In the context of this specification, Media Segments shall not be self-initialising. The Initialisation Segment shall be available to the HTTP Streaming Client before any Media Segment is processed within the Representation.
Editor’s Note: This currently implies that for one file per representation, the moov atom and the media data need to be announced separately.
12.4.2.1	Initialisation Segment Format
The Initialisation segment is conformant with the 3GP file format, adaptive streaming profile and shall be branded as “3gh9”.
The Initialisation Segment consists of the “ftyp” box, the “moov” box, and optionally the “pdin” box. The “moov” box contains no samples (i.e. the entry_count in the “stts”, “stsc”, and “stco” boxes shall be set to 0) and is then very small in size. This reduces the start-up time significantly as the Initialisation Segment as needs downloaded at the start of the HTTP streaming session by the client.
The “mvex” box shall be contained in the “moov” box to indicate that the client has to expect movie fragments. The “mvex” box also sets default values for the tracks and samples of the following movie fragments.
The Initialisation Segment provides the client with the metadata that describes the media content. The client uses the information in the “moov” box to identify the available media components and their characteristics.
The Initialisation Segment shall not contain any “moof” or “mdat” boxes.
12.4.2.2	Media Segment Formats
The media segments are delivered as a set of “moof”, “mdat” box pairs (movie fragments). A single request may result in a response that contains one or more movie fragments.
A Media Segment consists or one or more whole self-contained movie fragments. A whole, self-contained movie fragment is a movie fragment box and a media data box that contains all the media samples referenced by the track runs in the movie fragment box.
The movie fragment boxes must use movie-fragment relative addressing. Absolute byte-offsets must not be used. In a movie fragment, the durations by which each track extends must be as close to equal as practical. In particular, as movie fragments are accumulated, the track durations should remain close to each other there should be no 'drift'.
Each media segment may contain an ‘styp’ box with the brand ‘3gm1’.
Each ‘traf’ box may contain a ‘tfad’ box.
Each media segment except for the first media segment in a representation shall contain an ‘sidx’ box. If the first media segment in a representation contains an ‘sidx’ box, then the first_element_time shall be set to 0.
If present, the ‘sidx’ box shall be at the beginning of the media segment.
Editor’s Note:
· The provision of random access information within a segment is FFS.
· The provision of information on how to accurately present each contained component in the representation without accessing any previous media segment in each representation is FFS.
· The provision of metadata information for faster accessing subsets of the segment is FFS.
12.4.3	Usage on Server and Client
Adaptive HTTP-Streaming uses 3GP files according to the 3GP Adaptive-Streaming profile as specified in TS 26.244 [r2]. Content may be prepared as 3GP files according to the 3GP Adaptive-Streaming profile. Initialisation segments and Media Segments may be generated by segmenting such 3GP files and possibly adding boxes for timing and random access. Segment Index ‘sidx’ boxes may be pre-contained in 3GP files or may be generated during the segmenting process. Clients may store a concatenation of a received initialisation segment and a sequence of media segments and a sequence of ‘moof’ and ‘mdat’ boxes obtained from Media Segments to create a compliant 3GP file according to the Adaptive Streaming profile without accessing any media samples.
Proposal
The following is proposed:
· To add two new boxes, ‘tfad’ and ‘sidx’ as specified in section 2.2 to the 3GP File Format.
· To include both boxes in the adaptive Streaming Profile for the 3GPP File format according to section 3.2.
· To update the text on the Usage of the 3GP file format according to section 4.2.

- 11/11 -
