Page 1

3GPP TSG-SA4 AHI Meeting
S4-AHI173
02 – 04 March 2010
Aachen, Germany
	Agenda item:
	6

	Source:
	Qualcomm Incorporated

	Title:
	Adaptive HTTP Streaming: Client Behaviour

	Document for
	Discussion and Approval

Summary

This document provides a pseudo CR to S4-100185 on the media presentation. It is equivalent to the full proposal submitted in document S4-AHI170.

The change provides text proposals for:

· Overview operation

· MPD Instance construction for On-Demand and Live Services

· Seeking

· Trick Modes

· Switching Representations
	First Change

12
Adaptive HTTP Streaming
12.6
Client Behaviour

12.6.1
Overview

An adaptive HTTP streaming client is guided by the information provided in the MPD. It is assumed that the client has access to the MPD. For providing a continuous streaming service to the user:

1. The client parses the MPD and creates a valid MPD Instance for the actual time NOW taking into account the procedures specified in section 12.6.2.

2. The client selects one representation based on the information in the representation attributes and other information, e.g. available bandwidth measurements, client capabilities. Then, if present, the client acquires the relevant initialisation segments and the media segments of the selected representation.

3. The client accesses the content by requesting segments or byte ranges of segments. The client requests the media segment of the selected representation by using the Media Segment URLs and StartTimes provided in the MPD Instance.

4. The client buffers media of at least minBufferTime duration before starting the presentation. Once the presentation has started, the client continues consuming the media content by continuously requesting media segments or parts of media segments taking into account the MPD update and construction procedures in clause 12.6.2. The client may change representations taking into account updated MPD information and/or updated information from its environment, e.g. access bitrate changes.

With any request for a media content containing a random access point, the client may select a different alternative representation.

12.6.2
MPD Instance Construction

12.6.2.1
General

Assume that the HTTP-streaming client has access to an MPD. This section describes, how a client may generate an MPD Instance from an MPD at a specific client-local time time NOW. In this description, we use the term NOW to mean “the current value of the clock at the reference client performing the construction of an MPD Instance from an MPD.” Clients that use this HTTP streaming, SHOULD use NTP [r3] or SNTP [r4] or some similar protocol to synchronize their clocks to a globally accurate time standard.

Table X Client Internal MPD Instance

	Parameter Name
	Cardinality
	Description

	MPD Instance
	1
	MPD Instance

	
	minBufferTime
	1
	Provides the minimum buffer time for the stream in ms.

	
	Period
	1 … N
	Provides the information of each period

	
	
	start
	
	Provides the accurate presentation time of the first media segment in each representation.

	
	
	Representation
	1 … N
	Describes each representation

	
	
	
	RepresentationAttributes
	1
	Provides the Attributes of the Representation including Bandwidth, etc., that are necessary for the selection

	
	
	
	Segments
	1
	Provides the segment URL map.

	
	
	
	
	InitialisationSegment
	0, 1
	Describes the Initialisation Segment. If not present each media segment is self-contained.

	
	
	
	
	
	URL
	1
	Describes the URL where to access the Initialisation Segment

	
	
	
	
	MediaSegment
	1 … N
	Describes the accessible media segments

	
	
	
	
	
	startTime
	1
	Describes the approximate start time of the media segment in the period.

	
	
	
	
	
	URL
	1
	Describes the URL where to access the Media Segment.

	
	endTime
	1
	Provides the end time of this MPD.

This description does not specify a normative client implementation, but a method to describe the interpretation of the MPD elements and attributes and a way for an HTTP-streaming server to check the generated MPD against this reference client.

Specifically, it is described how the HTTP-client generates the parameters in Table X, the periods, representations and the media segments.

In case the attribute type of the MPD is “OnDemand”, the reference client generates the MPD Instance according to section 12.6.2.2.

In case the attribute type of the MPD is “Live”, the reference client generates the MPD Instance according to section 12.6.2.3.

12.6.2.2
MPD Instance for On-Demand Services
For On-Demand services the HTTP streaming client uses the MPD to construct an MPD Instance for the entire media presentation. As long as the MPD is accessible, the construction of the MPD Instance is independent from the time NOW. The mapping of the MPD attributes and elements to the MPD Instance parameters for On-Demand services is as follows:

· The duration attribute of the MPD is mapped to the EndTime in the MPD Instance.

· The minBufferTime attribute of the MPD is mapped to the minBufferTime parameter in the MPD Instance.

· The Period elements are mapped to Periods in the MPD Instance.

· The start attribute of each Period element of the MPD is mapped to the start parameter of each period in the MPD Instance.

· The Representation elements of each period in the MPD are mapped to Representations in the MPD Instance.

· The attributes for each Representation element of each period in the MPD are mapped to Representation Attributes in the MPD Instance.

· The generation of the segments information for each representation in the MPD Instance is based on the information provided in the MPD elements SegmentsInfoDefault and SegmentsInfo is provided in section 12.6.2.4.
12.6.2.3
MPD Instance for Live Services

For Live services the HTTP streaming client uses the MPD to construct an MPD Instance for a subset of the media presentation or the complete media presentation. The construction is goverened by the current value of the clock at the reference client NOW. A compliant HTTP Streaming-Client operating at a specific wall-clock time NOW uses an MPD with ExpiryTime together with the MPD attribute timeShiftBufferDepth in the following manner:

· If MPDExpiryTime < (NOW-timeShiftBufferDepth), i.e., the actual copy of the MPD is not valid and before requesting any segments, the MPD needs to be updated unless the endTime attribute is not provided. If the endTime attribute is provided and endTime < (NOW-timeShiftBufferDepth), then this services has terminated and is no longer accessible for the HTTP-streaming client.

· Otherwise if MPDExpiryTime >= (NOW-timeShiftBufferDepth), the actual copy of the MPD permits to construct a valid MPD that spans the interval [NOW-timeShiftBufferDepth; MPDExpiryTime].
The mapping of the MPD attributes and elements to the MPD Instance parameters for Live services is as follows:

· The endTime parameter of the MPD Instance is derived as follows:

· If the endTime attribute in the MPD is present, then the EndTime parameter of the MPD Instance is equal to this endTime attribute in the MPD.

· If the endTime attribute in the MPD is not present, then the HTTP-client uses the ExpiryTime of the MPD as endTime parameter. For example, if the MPD was obtained using HTTP, then RFC 2616 [r1], section 13 describes exact procedures how a client can use the time NOW and the HTTP/1.1 headers to determine the expiration time of the MPD.
· The minBufferTime attribute of the MPD is mapped to the minBufferTime parameter in the MPD Instance.

· The start attribute of each period of the MPD is mapped to the start parameter of each period in the MPD Instance.

· The generation of the segments information in the MPD Instance based on the information provided in the MPD attribute timeShiftBufferDepth and the elements SegmentsInfoDefault and SegmentsInfo is provided in section 12.6.2.4.

The client only requests segments that are included in the MPD Instance at time instant NOW according to the above procedures. In the case HTTP is used to obtain the MPD the client should apply HTTP caching procedures to reduce the number of requests sent and should issue conditional requests whenever a previous, expired, version of the Media Presentation Manifest is available.
12.6.2.4 Segments List Generation

12.6.2.4.1 General

Each Representation element contains one SegmentInfo element that together with a possibly present SegmentInfoDefault element on MPD level and possibly present SegmentInfoDefault elements on Period level generates the segment information of each segment within a Representation in the MPD Instance.

Specifically, each SegmentInfo Element generates a list of Media Segment URLs (possibly with a byte range) and Media Segment start times relative to the start of the Representation.

The following rules for SegmentInfoDefault elements or SegmentInfo elements in a MPD:

· If the SegmentInfoDefault element on MPD level or the SegmentInfoDefault element on Period level or the SegmentInfo element contains a baseURL attribute at the, then the composition of a relative URL with an effective baseURL is done using normal URL Reference Resolution (see [RFC 3986], section 5.2).

· If the SegmentInfo element contains InitialisationSegmentURL element then this element is mapped to the URL of the Initialisation Segment of this Representation in the MPD Instance.

· If the SegmentInfo element contains a urlId attribute or a URLtemplate element, then the procedures in section 12.6.2.4.2 are used to generate a list of Media Segment Parameters.

· If the SegmentInfo element contains one or more Url elements providing a set of explicit URL(s) for media segments, then the procedures in section 12.6.2.4.3 are used to generate a list of Media Segment Parameters.

· If the type attribute of the MPD is Live, then the restrictions on Media Segment Lists as provided in section 12.6.2.4.4 need to be taken into account.

12.6.2.4.2 Template-based Generation of Media Segment Paramaters

If the SegmentInfo element contains a urlId attribute or a URLtemplate element, then the procedures in this section are used to generate a list of Media Segment Parameters, URL and start time.

The segment information for a Representation at any given time is obtained by combining the representation SegmentInfo element, if any, with the SegmentInfoDefault on Period level element, if any, and the SegmentInfoDefault element on MPD level. Each attribute of the SegmentInfoDefault element on Period level overides the same attribute of the SegmentInfoDefault element on MPD level. Each attribute of the SegmentInfo element overrides the same attribute of the SegmentInfoDefault element on Period level and SegmentInfoDefault element on MPD level.
Assume that the period duration is defined as PeriodDuration. For any Period in the MPD Instance except for the last one, the PeriodDuration is obtained as the time difference between the start parameter of the next period and the start parameter of the current period. For the last Period in the MPD Instance, the PeriodDuration is obtained as the time difference between the endTime parameter and the start parameter of the current period.

If the SegmentInfo Element contains an urlId attribute, then the $UrlID identifier in the valid UrlTemplate is replaced by the value of the urlID attribute to create a new UrlTemplate string that is valid for the current Representation. If the SegmentInfo Element contains UrlTemplate element, then this UrlTemplate is used as the valid UrlTemplate for this Representation.
Assume that Media Segments within a Representation have assigned consecutive segment indices i=1,2,3…., i.e. the first Media Segment has assigned i=1, the second Media Segment has assigned i=2, etc.

A valid list of Media Segments with segment index i=1,2,3, …, MediaSegment.StartTime[i] and MediaSegment.URL[i] is obtained as follows using the duration attribute for this Representation:

1. The Media Segment Index is initialised to i=1.

2. The start time of the first media segment is set to 0, i.e. MediaSegment.StartTime[1] = 0.

3. The start index of the first media segment is set to 1, i.e. Index[1]=1.

4. If the UrlTemplate for this Representation contains no Count identifier, the maximum duration count MaxCount is set to 1, otherwise it is set to MaxCount = ceil((PeriodDuration - MediaSegment.StartTime[i])/duration) with ceil(x) the smallest integer not less than x.

5. The duration count Count[i] for this media segment i may be chosen as any integer such that 1 <= Count[i] <= MaxCount.

6. The URL of the media segment i, MediaSegment.URL[i], is obtained by replacing the $Index identifier by Index[i] and if present $Count identifier by Count[i] in the valid UrlTemplate. Furthermore, relative URLs is resolved as specified in section 12.6.2.4.1.

7. If the (PeriodDuration - MediaSegment.StartTime[i] - Count[i]*duration) >= duration,

· then

· A new Media Segment is added to the list, i.e. i = i + 1;

· MediaSegment.StartTime[i] = MediaSegment.StartTime[i-1] + Count[i-1]*DURATION

· Index[i] = Index[i-1] + Count[i-1]

· Proceed with step 4.

· else

· In case of attribute type is “OnDemand”, the list of Media Segments for this Representation is complete. In case of attribute type is “Live”, the restrictions as specified in section 12.6.2.4.4 applies for the creation of the accessible list of Media Segments.

Note that the procedure to specify a list of Media Segments does imply any server or client implementation restrictions. The procedure only provides a reference algorithm for the creation of a valid list of Media Segments.

Note that where the UrlTemplate contains a Count identifier then according to the above rules clients have flexibility to construct URLs that each reference any multiple of the segment duration up to and including all remaining segments in the period. This implies either that all possible such files are provided at the server of that the server possesses the capability to aggregate segments on the fly in response to such requests.

12.6.2.4.3 Playlist-based generation

If the SegmentInfo Element contains one or more Url elements, then the procedures specifed in this section apply to generate a valid list of accessible Media Segment URLs and Start Times described in each SegmentInfo element taking into account the procedures to integrate information from the SegmentInfoDefault elements as specified in section 12.6.2.4.1.

Assume that Media Segments within a Representation have assigned consecutive segment indices i=1,2,3…., i.e. the first Media Segment has assigned i=1, the second Media Segment has assigned i=2, etc.

A valid list of Media Segments with segment index i=1,2,3, …, MediaSegment.StartTime[i] and MediaSegment.URL[i] is obtained as follows:

1. The URL of the media segment i, MediaSegment.URL[i], is obtain as the i-th Url Element in the SegmentInfo Element. Furthermore, relative URLs are resolved as specified in section 12.6.2.4.1.

2. If the duration attribute is provided, then the MediaSegment.StartTime[i] of Media Segment i is obtained as (i-1)*duration. If the duration attribute is not provided, then the MediaSegment.StartTime[0] of the only provided segment shall be set to 0.

3. In case of attribute type is “OnDemand”, the list of Media Segments for this Representation is complete. In case of attribute type is “Live”, the restrictions as specified in section 12.6.2.4.4 shall apply for the creation of the accessible list of Media Segments.
12.6.2.4.4 Media Segment List Restrictions for Live Services

For live services, the MPD permits to construct a valid MPD that spans the interval [NOW-timeShiftBufferDepth; MPDExpiryTime]. Therefore, the MPD contains Media Segments for which the sum of the start time of the Media Segment and the Period.start parameter falls in the interval [NOW-timeShiftBufferDepth-duration; MPDExpiryTime].

12.6.3

Seeking

Assume that a client attempts to seek to a specific presentation time tp in a Representation with start time Period.start. Before accessing the representation, the client needs acquire the initialisation segment, if present.

Based on the MPD, the client has access to the media segment start time and media segment URI of each segment in the representation. The segment index segment_index most likely to contain media samples for presentation time tp is obtained as the maximum segment index i, for which the start time MediaSegment[i].StartTime is smaller or equal to the presentation time relative to the representation start time tp-Period.start, i.e.

segment_index = max { i | MediaSegment[i].StartTime <= tp- Period.start }.
The segment URI is obtained as MediaSegment[segment_index].URL.

Note that timing information in the MPD may be approximate due to issues related to placement of Random Access Points, alignment of media tracks and media timing drift. As a result, the segment identified by the procedure above may begin at a time slightly after tp and the media data for presentation time tp may be in the previous media segment. In case of seeking, either the seek time may be updated to equal the first sample time of the retrieved file, or the preceeding file may be retrieved instead. However, note that during continuous playout, including cases where there is a switch between alternative versions, the media data for the time between tp and the start of the retrieved segment is always available.

For accurate seeking to a presentation time tp, the HTTP-Streaming Client needs to access a random access point (RAP). To determine the random access point in a media segment, the client may use the information in the ‘mfra’ to locate the random access point and the corresponding presentation time in the media presentation. If no RAP with presentation time before the requested presentation time tp is available, the client may either access the previous segment or may just use the first random access point as seek result. To avoid such problems, media segments should start with a RAP.

Also note, that not necessarily all information of the media segment needs to be downloaded to access the presentation time tp. The client may initially request the ‘mfra’ box from the beginning of the media segment. By use of the ‘mfra’, file timing can be mapped to byte ranges of the segment. By using partial HTTP requests, only the relevant parts of the media segment may be accessed for improved user experience and low start-up delays.

12.6.4

Support for Trick Modes

The client may pause or stop a media presentation. In this case client simply stops requesting media segments or parts thereof. To resume, the client sends requests to media segments, starting with the next fragment after the last requested fragment.

Other trick modes such as fast-forward and backward seeking may be supported by adjusting the playout speed and/or presentation order of retrieved samples. A client may also issue requests corresponding to a subset of the samples of a representation and/or choose alternative representations with a lower bitrate in order to support higher speed playback.

12.6.5

Switching Representations

Based on updated information during an ongoing media presentation, a client may decide and desire to switch representations. Switching to a “new” representation is equivalent to tuning in or seeking to the new representation. Once switching is desired, the client should seek to a RAP in the “new” representation at a desired presentation time tp later than the current presentation time. Presenting the “old” representation up to the RAP in the “new” representation enables seamless switching.

Aligning RAPs across different representations may be advantageous in locating RAPs in other representations.

