3GPPSA4-MBS SWG on HTTP Streaming
Tdoc S4-AHI148
Feb 2010, Aachen, Germany

Source:
Apple Inc.
Title:
HTTP Streaming proposed changes to 26.244
Document for:
Discussion and Agreement

Agenda Item:
4

1 Introduction

This document proposes a new section for 26.244 to cover file format enhancements to support HTTP streaming. It is modelled on the existing chapter 7 (Streaming Server Extensions).

We propose adding this as a new chapter (presumably, chapter 13).
2 HTTP Streaming Extensions

2.1 Introduction

This chapter specifies a number of enhancements to the 3GP file format. These enhancements all stand alone, that is, they do not affect the interpretation of existing structures in the file format. In particular, they are only needed when a single fragmented 3GP file is split into ‘segments’, and each segment is a separate file. All the extensions are all both un-needed and ignorable for the case of complete 3GP files, and thus backwards-compatibility is maintained.
2.2 Segment Typing

It is possible in HTTP streaming to form segment files that are not fully compliant 3GP files (e.g. they do not contain a movie box). If such segments are stored in separate files (e.g. on a standard HTTP server), then it is strongly recommended that those ‘segment files’ start with a segment-type box, to enable identification of those files, and declaration of the specifications with which they are compliant.

A segment type box is formatted exactly the same an 'ftyp' box, except it takes the signature 'styp'. The brands within it should include the same brands that were included in the ftyp box that preceded the moov box, and may also include additional brands to indicate the compatibility of this segment with various specification(s).

Valid segment type boxes must be first in a segment. It may be removed if segments are concatenated (e.g. to form a full 3GP file) but this is not required. Segment type boxes that are not first in their files should be ignored.

Note: brands for HTTP streaming are defined in XXX.
2.3 Segment Time Alignment

2.3.1 Introduction

When a movie fragment immediately follows an empty ‘moov’ box, it is noted that the initial decode time for the first sample in each track is 0, that is, the track fragment start times are aligned. Subsequent track fragments acquire an initial decode time as the sum of the previous samples’ decode durations. If one or more movie fragments are skipped, this initial decode time is unknown. In this case, this box supplies the initial decode time information.

2.3.2 Definition

Box Type:
‘tfdt’
Container:
Track fragment box (‘traf’)
Mandatory:
No
Quantity:
Zero or one.

The Track Fragment Base Media Decode Time Box, if present, shall be positioned after the Track Fragment Header Box and before the first Track Fragment Run box.

2.3.3 Syntax

aligned(8) class TrackFragmentBaseMediaDecodeTimeBox

extends FullBox(‘tfdt’, version, 0) {

if (version==1) {

unsigned int(64) baseMediaDecodeTime;

} else { // version==0

unsigned int(32) baseMediaDecodeTime;

}
}

2.3.4 Semantics

version is an integer that specifies the version of this box (0 or 1 in this specification).

baseMediaDecodeTime is an integer equal to the sum of the decode durations of all earlier samples in the media, expressed in the media's timescale. It does not include the samples added in the enclosing track fragment.

2.4 Segment Random Access Assistance

2.4.1 Introduction

When a segment contains a number of movie fragments significantly greater than 1, it can be helpful to identify the random access points within the segment, much as the Movie Fragment Random Access Box helps in this case for an entire file.

2.4.2 Segment Fragment Random Access Box

Definition

Box Type:
‘sfra’
Container:
File
Mandatory:
No
Quantity:
Zero or one
The Segment Fragment Random Access Box (‘sfra’) provides a table that may assist readers in finding random access points in a segment using movie fragments. It contains a track segment fragment random access box for each track for which information is provided (which may not be all tracks). It is usually placed at the end of the segment; the last box within the Movie Fragment Random Access Box provides a copy of the length field from the Segment Fragment Random Access Box. Readers may attempt to find this box by examining the last 32 bits of the segment, or scanning backwards from the end of the file for a Movie Fragment Random Access Offset Box and using the size information in it, to see if that locates the beginning of a Segment Fragment Random Access Box.
This box provides only a hint as to where random access points are within this segment; the movie fragments themselves are definitive. It is recommended that readers take care in both locating and using this box as modifications to the file after it was created may render either the pointers, or the declaration of random access points, incorrect.

A Movie Fragment Random Access Box [should/must] be placed in this box, to provide a pointer to the beginning of this box from its end.

Syntax

aligned(8) class SegmentFragmentRandomAccessBox
 extends Box(‘sfra’)
{
}

2.4.3 Track Segment Fragment Random Access Box

Definition

Box Type:
‘tsra’
Container:
Movie Fragment Random Access Box (‘sfra’)
Mandatory:
No
Quantity:
Zero or one per track
Each entry contains the location and the presentation time of the first random accessible sample in the fragment, or the first sample if they are all randomly accessible. It indicates that the sample in the entry can be random accessed. Note that not every random accessible sample in the track needs to be listed in the table.

The absence of this box does not mean that all the samples are sync samples. Random access information in the ‘trun’, ‘traf’ and ‘trex’ shall be set appropriately regardless of the presence of this box.

Syntax

aligned(8) class TrackSegmentFragmentRandomAccessBox
 extends FullBox(‘tsra’, version, 0) {

unsigned int(32)
track_ID;

const unsigned int(26)
reserved = 0;

unsigned int(2)
length_size_of_traf_num;

unsigned int(2)
length_size_of_trun_num;

unsigned int(2)
length_size_of_sample_num;

unsigned int(32)
number_of_entry;

for(i=1; i <= number_of_entry; i++){

if(version==1){

unsigned int(64)
time;

unsigned int(64)
moof_offset;

}else{

unsigned int(32)
time;

unsigned int(32)
moof_offset;

}

unsigned int((length_size_of_traf_num+1) * 8)
traf_number;

unsigned int((length_size_of_trun_num+1) * 8)
trun_number;

unsigned int((length_size_of_sample_num+1) * 8)
sample_number;

}
}
Semantics

track_ID is an integer identifying the track_ID.

length_size_of_traf_num indicates the length in byte of the traf_number field minus one.

length_size_of_trun_num indicates the length in byte of the trun_number field minus one.

length_size_of_sample_num indicates the length in byte of the sample_number field minus one.

number_of_entry is an integer that gives the number of the entries for this track. If this value is zero, it indicates that every sample is a random access point and no table entry follows.
time is 32 or 64 bits integer that indicates the presentation time of the random access sample in units defined in the ‘mdhd’ of the associated track, relative to the beginning of the track (i.e. the first sample in the moov, or the first moof if the moov is empty)

moof_offset is 32 or 64 bits integer that gives the offset of the ‘moof’ used in this entry. The value is the byte-offset between the beginning of the ‘moof’ and the beginning of the sfra containing this box (i.e. it measures backwards from the sfra to the moof).

traf_number indicates the ‘traf’ number that contains the random accessible sample. The number ranges from 1 (the first ‘traf’ is numbered 1) in each ‘moof’.

trun_number indicates the ‘trun’ number that contains the random accessible sample. The number ranges from 1 in each ‘traf’.

sample_number indicates the sample number that contains the random accessible sample. The number ranges from 1 in each ‘trun’.

