Page 4
Draft prETS 300 ???: Month YYYY

TSG-SA4 MBS SWG ad-hoc #4 and Video SWG ad-hoc meeting
Tdoc S4-AHI097
28th September – 1st October, 2009, Seattle, USA

Agenda item:
6
Source:
Research In Motion UK Limited
Title:
Tuning into a Live HTTP Stream with Client Controlled Adaptation
Document for
Discussion and Approval
1 Introduction

In order to provide a good user experience, HTTP streamed content should be adaptable to channel conditions and to the resources of the client (display resolutions, MIPS, etc.) as is the case for 3GPP Packet Switched Streaming Service [1]. This adaptation can in theory be controlled by the client or by the server.

There are numerous advantages detailed in [2],[3] to having an HTTP streaming service where the adaptation is controlled by the client.

In the Permanent Document for PSS and MBMS Extensions [4] it was agreed that HTTP streaming shall be possible with standard HTTP (1.1 and higher) servers. This contribution pertains to the case where the client controls the adaptation and needs to tune into a live stream.

2 Tuning in to a Live HTTP Stream
It has been previously proposed that fragments are used to support adaptation in live streaming. These are supported by the 3GPP file format[5][6]. A content segment will be defined in this document to mean a constant time duration of content, with the content segments (a countably infinite number in the case of live streaming) partitioning the content. Fragments are then the encoded content segments and corresponding metadata. A content segment will correspond to multiple fragments (each fragment encoding the content segment with a particular codec/bitrate/resolution and belonging to a different 3GPP file on the server). Choosing the content segments to have constant time duration is convenient for seeking and adaptation. When the client first accesses a 3GPP file on the server that is being created live (as opposed to on demand), the client may want to seek directly to the “live” content and not view the entire file, especially for “long-life” live content. The client could parse the entire file to get to the most recently created content. A faster way is to have a metafile on the server where the content creator continually writes the top of the file with the index of the latest fragment created and also a byte offset into the 3GPP file as well as the size in bytes of the fragment. There could be a metafile for each different bitrate/resolution/codec or there could be one metafile containing an index and byte offsets/sizes for each different bitrate/resolution/codec combination.
Each content segment will have a corresponding index. All of the fragments corresponding to a content segment will be associated with the same index. So in the case of one metafile containing byte offsets and sizes for multiple files a “fragment line” is defined to be an index followed by multiple byte offset/size pairs. Correspondence between 3GPP files and byte offset/size pairs can be inferred by the order in which the files are listed in the meta box.
In order to be able to seek or pause for a reasonable duration of time the metafile must contain a reasonably large number of fragment lines. If the fragments correspond to content segments which are 5 seconds in duration, for example, then 30 minutes of content will correspond to 360 fragment lines in the metafile.

During a live broadcast every client needs access to this metafile very frequently. So, if every client were downloading even 30 minutes of fragment lines regularly, this would not be a trivial amount of bandwidth. If, on the other hand, the server/content creator always writes the most recent fragment line to the top of the file then the clients can always do a GET using byte ranges. The byte range would be large enough to contain the most recent fragment line(s). Either the fragment lines could be of constant size or have a maximum size so that a known byte range would always retrieve the desired number of fragment lines. The “If-Modified-Since” http header can be used in the request so that a response from the server is only returned if the metafile has been modified since the last http request from the client. The client can base the time in the “If-Modified-Since” header in the request on the time in the “Last-Modified” or “Date” headers of the last server response corresponding to a request for the metafile.
3 Proposal

For live HTTP streaming and client controlled adaptation it is proposed that a metafile(s) containing the content segment index number and fragment offsets and sizes be used (a link to the metafile could be placed in the meta box of the 3GPP file). This meta file is continuously updated by the server/content creator. For example, it can update the metafile with the index of the latest content segment encoded and a byte offset and size for a fragment corresponding to each different 3GPP file containing an encoding of the same content. Alternatively there can be a metafile corresponding to each different 3GPP file on the server that gets updated with the latest fragment index and byte offset corresponding to that file. The server/content creator writes the latest “fragment line” to the top of the metafile. This would enable the client to quickly tune into the “live” part of live content. The client can then access the top of the metafile using an HTTP GET with a byte range. The clients use the “If-Modified-Since” http header in the request with time based on the “Last-Modified” or “Date” header of the last server response corresponding to a request for the metafile.
4 References
[1]

3GPP TS 26.234, “Transparent end-to-end Packet-switched Streaming Service (PSS); Protocols and Codecs”, Release 8

[2]
S4-090463, “Advantages of Client Controlled Adaptation for HTTP Streaming”

[3] S4-090510, “On the Motivations for HTTP Streaming”

[4] S4-090573, “Permanent Document for PSS and MBMS Extensions”

[5]
3GPP TS 26.244, “Transparent end-to-end Packet-switched Streaming Service (PSS); 3GPP File Format (3GP)”, Release 8

[6]
ISO/IEC 14496-12, “Information technology – Coding of audio-visual objects – Part 12: ISO base media file format”
- 1/3 -

